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INTRODUCTION, PROCEDURES, AND RECOMMENDATIONS 

SCIENTIFIC BACKGROUND 

In February of 1979, the Navy Personnel Research and Development 
Center in San Diego, California, issued technical report 79-8, 
"Catastrophe Theory in the Behavioral Sciences" written by W. A. 
Hillix et al. The characteristics of catastrophe theory were 
described, applications reviewed, and some experimentation on 
perception conducted. The conclusions and recommendations included 
the following: 

Catastrophe theory is conceptually rich and 
provides a new way of looking at and conducting 

■psychological experiments. While its promise has 
not yet been realized, it is far too early to 
dismiss the theory. 

Work should proceed toward further developing 
statistical procedures that will help in 
evaluating the fit of catastrophe theory models to 
data. 

Renewed emphasis should be placed on the 
sequential and systematic manipulation of 
independent variables as a tool in behavioral 
methodology.  (Pages 45 and 47) 

In April of 1980, E. C. Zeeman presented a paper on "Catastrophe 
Models in Administration" in which he observed that in administration 
there are many "phenomena where continuously changing forces produce 
discontinuous effects." He detailed examples in endangered 
institutions, obsolescence versus need, territorial defense, job 
satisfaction, committee behavior, and decision making, among others. 

At recent meetings of the European Association for Institutional 
Research, papers (Cossu, 1980; Johnson, 1981; Lacher, 1981) were 
presented on cost accounting, budget planning, and decision making 
which applied the principles of catastrophe theory to administration 
in institutions of higher education in several different countries. 

At this time there are many people who are beginning to be 
interested in the potential of catastrophe theory in administrative 
practice. One such expression of interest was made by President 
Donald E. Walker (1980) of Southeastern Massachusetts University when 
he said, "I think we (administrators) repair to the oracle of the 
computer too quickly with rather fixed stereotypes in our minds, and 
because of the questions we ask, get answers that are both unrealistic 
and not useful. The probelm is more complicated by the fact that even 
practiced administrators have the wrong models in their heads of what 



they do; they end up explaining catastrophe only in terms of 
pathology, rather than the end result of the predictable 'natural 
process . 

The administrators who share this view are not typically 
mathematicians or statisticians and require technical assistance to 
make applications of the theory. The mathematicians and statisticians 
who have the technical knowledge do not have the experience nor the 
insights into the problems needed to understand the underlying 
dynamics of organizational systems. 

OBJECTIVE 

The purpose  of this report is to bridge the communications gap 
between  mathematicians  and statisticians who have  worked on 
catastrophe theory in the social sciences, and administrators who 
understand the dynamics of organizational behavior. 

PROCEDURES 

Originally we envisioned the development of an encyclopedia from 
a lexicon prepared for this project (see Appendix), and Professor Tim 
Poston from University of Warwick contributed to this early planning. 
It soon became apparent, however, that this was an unrealistic 
expectation because of the differences in mathematical backgrounds 
among the participants. It was decided, rather, to bring together on 
the Florida State University campus five small groups of two to three 
participants each in order to carry on intensive discussions of 
catastrophe theory applications and, following this, to ask each 
participant to write his reflections upon the state-of-the-art and the 
potential developments of catastrophe theory. These work products 
were then reviewed by all other participants and comments were 
collected from this exchange. From these materials a draft report was 
prepared, circulated and taken to the University of Warwick in England 
for review by Professors E. C. Zeeman, Ian Stewart and J. Q. Smith. 
The participants who contributed to this process were: 

J. Callahan, Professor, Smith College 
M. Hastings, Professor, Hofstra College 
Markus, Professor, University of Minnesota 
P. Simon, Professor, University of Michigan 
N. Stewart, Professor, University of Warwick 
C. Zeeman, Professor, University of Warwick 

Dr. L. Cobb, Professor, South Carolina Medical School 
Dr. I. R. Savage, Professor, Yale University 

Mathemat ics 

Dr. J. 
Dr. H. 
Dr. L. 
Dr. C. 
Dr. I. 
Dr. E. 

Statistics 



Dr. J. Q. Smith, Professor, University of London 
Dr. J. E. Stecklein, Professor, University of Minnesota 

Administration 

Dr. R. T. Holt, Graduate Dean, University of Minnesota 
Dr. B. Lawrence, Director, NCHEMS 
Dr. D. E. Walker, President, Southeastern Massachusetts 

University 

In addition, several other people agreed to review the work 
products and to comment.  These included: 

Dr.  K.  S.  Cameron,  Director  of Organizational  Studies, 
NCHEMS 

Dr.  P.  Peregoy,  Professor,  University of Pittsburgh  at 
Johnstown 

Dr.  W. A. Simpson, Professor, Michigan State University 

During the several symposia on the Florida State University 
campus a seminar was held with the following graduate students: 
Paul Carney, Amilcar Castellano, Julia Duckwall, and Gail Fletcher. A 
special contribution to the project was made by Gail Fletcher and 
Julia Duckwall who took primary responsibility for the typing, 
proofreading and production of this report. Also, we are indebted to 
the special contribution of Dr. James Callahan for his preparation of 
all the drawings. 

END PRODUCT 

What  follows are the principal investigators'  recommendations; 
views  of  selected participants who contributed papers  on  the  key 
issues  of  the  state-of-the-art  of catastrophe  theory;   and the 
reactions,  in the form of letters, from other participants on these 
issues.  Finally, the lexicon, which formed the mathematical base, is 
appended to this report. 

The end products found in this report approach the qualitative 
methods in the social sciences from the theory of parametrized systems 
of (not necessarily linear) differential equations, or from another 
point of view, in the theory of slowly evolving (nonlinear) dynamical 
systems.  A qualitative language is being developed in this active 
field of mathematical research and offers one of the best settings for 
the study, classification, and eventual understandingof many of the 
difficult problems in organizational effectiveness.  Our recommenda- 
tions suggest some first steps toward that understanding. 



RECOMMENDATIONS FOR FUTURE RESEARCH SUPPORT 

Many of the details of these recommendations were obtained during 
written and verbal interaction with the participants whose 
contributions are in this report. 

Catastrophe theory, in its generalized form, is a mathematically 
rich and active field. Competent mathematical researchers are 
currently being supported by the National Science Foundation (NSF) and 
since this support is expected to continue for the foreseeable future, 
there seems little reason to recommend that the Office of Naval 
Research (ONR) direct its attention to catastrophe theory in the 
general form. 

Elementary catastrophe theory,  where initial applications in the 
social sciences can be expected to be found,  is essentially complete, 
known,  organized,  and  exposited.   There  seems  little  reason  to 
recommend support of more research in this area, by either NSF or ONR, 
with two possible exceptions:  the elementary catastrophe theory of 
stochastic differential equations seems very important and is  almost 
completely  unstudied,  and practical geometric  understanding of 
otherwise  known  complicated singularities  is  interesting  and 
potentially useful. 

Statistical research on elementary catastrophe theory is another 
matter.  Practically nothing has been done and we encourage support of 
two  types of non-goal-oriented pure research proposals:   statistical 
problems associated with detection and calibration  of elementary 
catastrophes  over the next five to ten years,  and parametrized 
stochastic differential equations for an indefinite future. 

Organizational effectiveness research, we feel, should wait upon 
a determination as to whether catastrophe theory can be useful in 
advancing knowledge in the social sciences in general. This 
determination should be made by supporting some projects through their 
fruition. These projects must be more than conjectural qualitative 
model building; they must involve experiment and data collection. For 
the near term, we recommend support of applied projects conforming to 
a fairly rigid set of guidelines. 

Thus we have three types of projects to recommend: for the near 
term, applied projects of specified standard (described in 3.3); for 
the middle term, research into the statistics of elementary 
catastrophe theory; and for the long term, support of parametrized 
stochastic differential equations. We conclude by listing these 
project types and commenting on evaluation of proposals of the applied 
type. 



1  Parametrized stochastic differential equations.   (Long term 
support recommended) 

1.1 Brief description.   Research in stochastic differential 
equations (SDE),  particularly parametrized families of same 
(PSDE); nonlinear bifurcation problems in SDE; singularities 
and catastrophes in SDE; genericity in SDE. 

1.2 Potential importance. SDE is a relatively new area of 
interest in the mathematical sciences; PSDE is virtually 
embryonic. SDE will likely be one of the great intellectual 
bridges between deterrainists (users of differential 
equations or dynamical systems models, as in mathematics and 
classical physics) and stochastists (users of statistical 
and probabilistic models, as in statistics and certain 
branches of modern physics). PSDE has the potential of 
playing the same role, expanded to include such areas as 
bifurcation theory, catastrophe theory and differential 
dynamics. SDE and PSDE would seem to be the most natural 
mathematical settings for studying phenomena which have both 
a deterministic and a stochastic component driving their 
dynamics, 

Statistics of elementary catastrophe theory.   (Middle term 
support recommended--5 to 10 years) 

2.1 Brief  description.   Problems  associated with detection 
and/or  quantification of elementary catastrophes  in  data; 
theoretical  statistics  of multi-modal decision problems, 
distributions,  parametrized distributions,  genericity, and 
other non-single-valued phenomena. 

2.2 Potential   importance.   The  statistics of  elementary 
catastrophe theory would play an essential role in applied 
projects  of  a quantitative nature,  just as  present-day 
statistics  is  indispensable  in  current social   science 
research. 

Quantification  of models in the social sciences.   (Short term 
support recommended--3-5 years) 

3.1 Brief description.  Projects to collect data or otherwise 
empirically verify,  calibrate,  or quantify  catastrophe- 
theoretic  models  of  specified phenomena  in  the  social 
sciences. 

3.2 Potential  importance.  Studies of this type are necessary, 
and possibly  sufficient,  to judge on a factual basis  the 
potential of catastrophe theory in the social sciences. 



3.3 Recommended structure of proposals.  Proposals for Type 3 
projects  should be supported only if they meet each of  the 
following criteria: 

3.3.1 contain a catastrophe-theoretic model with variables 
already named (but not necessarily scaled) 

3.3.2 argue creditably for the plausibility of the model as 
far as possible on qualitative grounds 

3.3.3 discuss which variables in the model can and should 
be scaled and measured 

3.3.4 indicate what methods would be used to accomplish 
3.3.3. 

3.4 Evaluation. In evaluating proposals of Type 3 meeting the 
criteria set forth in 3.3.1 through 3.3.4, some possible 
negative features are as follows: 

3.4.1 confusion of or lack of proper distinction between 
proposed model and reality 

3.4.2 imprecise or inadequate enunciation of hypotheses of 
proposed model 

3.4.3 naive or mathematically unsound discussions of 
catastrophe theory and Thom's Classification Theorem 

3.4.4 overambitious output/input ratio, i.e. proposals to 
solve major problems or understand complex phenomena 
with relatively little effort. 

In addition, proposals of Type 3 should be evaluated on the basis 
of significance of the problem under study, soundness of methods 
proposed to gather data or otherwise scale variables, plausibility of 
the proposed model, and competence of the research team. 

To elaborate on the last point, the research team should display 
competence in mathematics, statistics, and social science. 
Mathematical competence should include an understanding of elementary 
catastrophe theory, including the concepts of topological equivalence, 
genericity, and local classification of singularities. Statistical 
competence should include working knowledge of procedures likely to 
arise in proposed data gathering and analysis. Social science 
competence should include thorough knowledge of relevant and 
background literature as well as experience in research in or near the 
proposed topic of study. These competencies could conceivably be 
found in one investigator, but it would seem more likely that teams of 
two or more would be necessary to obtain appropriate competency levels 
in all three of these directions. 

7 



OVERVIEW 



OVERVIEW OF CATASTROPHE THEORY 

Ian Stewart 

Activity in the field divides into (a) the mathematics and (b) 
its applications. As usual, there is a constant trade of ideas and 
problems between the two. 

A comprehensive bibliography is: 

Wetherhilt & Zeeman.  1981 bibliography on catastrophe theory 

Introductory texts in increasing order of difficulty include: 

Woodcock & Davis.  Catastrophe theory 

Saunders.   Introduction to catastrophe theory 

Thompson.     Instabilities   and  catastrophes  in  science  and 
engineering 

Gilmore.   Catastrophe theory for scientists and engineers 

Poston & Stewart.   Catastrophe theory and its applications 

Zeeman.   Catastrophe theory: Selected papers 1972-1977 

THE MATHEMATICS 

For mathematicians, the main interest in Thom's "catastrophe 
theory" is that it lays down a broad program for understanding 
bifurcating systems from the qualitative viewpoint. What most 
expository articles have (for simplicity) called "catastrophe theory" 
is really only a part of the subject, more properly called "elementary 
catastrophe theory." While certain technical questions do remain 
open, elementary catastrophe theory may be considered as a completed 
piece of mathematics: the main challenge is to extend it to other 
settings. Figure 1 shows some twenty variations on the theme of Thom 
that have been pushed through during the past decade. 
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FIGURE 1. The main extensions of elementary catastrophe theory and 
their interrelations over the past decade. ( " indicates 
a variation which has been developed both in finite and 
infinite dimensions.) 
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The major works in the field are: ' 

Arnold (various papers) . 

Golubitsky  &  Langford.    Classification  and unfolding  of 
degenerate Hopf bifurcations 

Golubitsky &.  Schaeffer.   A theory for imperfect bifurcation via 
singularity theory 

Golubitsky &.  Schaeffer.  Imperfect bifurcation in the presence of 
symmetry 

Malgrange.  Ideals of differentiable functions 

Mather (various papers) 

Thorn.  Structural  stability and morphogenesis 

Good expositions of the technical mathematics may be found in the 
books of Gibson (1979), Lu (1976), Martinet (1982); and Brocker & 
Lander (1975) in the Wetherhilt & Zeeman (1981) bibliography. 

The mathematical problems which have been solved in each of the 
areas shown in Figure 1 may be grouped as 

(a) classification:  What are the possible phenomena? 
(b) recognition:  How do we tell which one we've got? 
(c) perturbation:  If small disturbances are acting, what effect 

do they have? 

Important unsolved mathematical problems include: 
(a) globalize the existing local theories, 
(b) extend the range of non-elementary catastrophes that are 

well understood, 
(c) apply the methods to bifurcations to tori, 
(d) deal with Hamiltonian systems, 
(e) deal with chaotic dynamical systems, and 
(f) deal with forced oscillations and subharmonic bifurcation. 

The area is one of extensive mathematical research activity. 

RELATED THEORIES 

Several alternative approaches to a similar range of problems 
exist, in particular: 

(a) topological dynamics 
(b) bifurcation theory 
(c) synergetics 
(d) non-equilibrium thermodynamics. 

H 



Catastrophe theory is not in competition with these:  it is an attempt 
to add a new viewpoint and to supplement  (not  supplant)  them. 
Connections between all of these theories are extensive and deserve to 
be examined systematically and thoroughly. 
APPLICATIONS 

Broadly, the applications fall into two distinct classes, each 
with its own methodology: 

(a) physical science 
(b) social and biological science. 

[For example, see Thorn.  The two-fold way of catastrophe theory.] 

In physics, the starting-point in an application will be an 
existing mathematical theory (such as a partial differential equation) 
which is analyzed in a chosen setting (quantum mechanics, chemical 
kinetics, wave optics) using catastrophe theory as a mathematical 
tool. The catastrophes are deduced directly from existing models and 
theories. 

In social and biological science, catastrophe models are 
hypothesized on the basis of empirical observations. Sometimes the 
process is more deductive (game theory, population dynamics), 
especially in parts of biology (ecology, biochemistry) that more 
closely follow the physical paradigm; but the area in general is not 
already set up along deductive lines, and catastrophe theory can 
hardly be expected to make deductions from a non-existent basis. 

Physical applications are surveyed in: 

Berry & Upstill.   Catastrophe  optics:   Morphologies  of 
caustics and their diffraction patterns 

Guttinger & Eikemeier.  Structural stability in physics 

Poston & Stewart. Catastrophe theory and its applications. 

Stewart.  Applications of catastrophe theory to the physical 
sciences 

Stewart.  Catastrophe theory in physics 

The methods are successful and sound. 

SOCIAL SCIENCE I 

As is widely recognized, in this area methodological problems 
differ from those in physics. Catastrophe theory does not alter 
this general fact, although it suggests some potential for 
improvement. 

I 
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The majority of models in the existing literature are qualitative 
and speculative: "What if the world were this way?" This is the 
result of historical factors rather than an unavoidable feature of 
catastrophe modeling, and an increasing number of workers are taking 
the next, and crucial, step of performing well-designed experiments 
and testing their theories against data. The total number of such 
papers, however, is not large. 

The modeling process even for elementary catastrophes raises many 
unsolved problems, and there has been little attempt to progress 
towards even more complicated non-elementary catastrophe models. 
This appears sensible: it is best to learn to walk before attempting 
to run. The mathematical background can thus be considered as 
understood" as regards setting up the model and deriving its 
consequences. 

The main problems are the standard ones in social science: 
(a) definition of variables 
(b) measurement of variables 
(c) presentation of data 
(d) analysis of data 
(e) design of controlled experiments. 

Of these, (a),(b) and (e) yield to existing techniques; (c) poses new 
problems because the structure sought for is nonlinear, and it is 
difficult to visualize multidimensional nonlinear forms; and (d) 
raises many new problems in nonlinear data-fitting. Some progress 
has been made by Cobb (1980a, 1980b, 1980c), enough to allow suitable 
models to be pushed through to satisfactory conclusions. 

Relevant literature include: 
Cobb   (various papers) 
Colgan, Nowell, & Stokes  (1980) 
Seif   (1979) 
Smith, J. Q. (various papers) 
Stewart & Peregoy  (in press) 
Zeeman (19 77) 

The modeling of administrative processes may be considered a 
typical part of the general area of social science, and the above 
remarks apply specifically to it. Some of the more developed 
catastrophe theoretic models involve problems bearing a close 
resemblance to topics of concern in administration, and these may be 
used to assess the prospects. 

CONCLUSIONS 

The reasons for wishing to use catastrophe theory are not that it 
provides a universal classification of sudden changes: the belief that 
this is the case stems from a misunderstanding of expository material 
aimed at the layman. But it does offer a well-defined and natural 
range of models of discontinuous processes,  with a good mathematical 
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pedigree, of proven value in physical science, and appearing to have 
some potential in social science by virtue of the following features: 
structural stability (robustness) and genericity (avoidance of the 
unnaturally special). Its qualitative generality is also an 
advantage since in social science it is unwise to place too much 
reliance on a specific system of equations or on an over-detailed 
construct. 

The objectives  of  current  research,  and  the needs  of  future 
research, include: 

(a) identification of appropriate areas for modeling by 
catastrophes; 

(b) design of models in appropriate settings; 

(c) design of experiments, collection of data, and testing of 
data (more studies will be needed to gain enough 
experience); 

(d) improvement of statistical methods for analyzing nonlinear 
models and data; and, 

(e) provision of  theoretical  underpinning  for  successful 
empirical models,  aiming at a more deductive  overall 
structure.   But this must be a long-term aim except  in 
special cases. 

These objectives involve expertise in a wide range of topics: abstract 
mathematics, statistics, and numerous branches of social science. It 
will be necessary to assemble teams of qualified researchers to 
achieve an adequate breadth and depth of expertise. 

14 



CONTRIBUTED  PAPERS 



CATASTROPHE-THEORETIC AND DYNAMICAL SYSTEMS MODELING 
IN SOCIAL SCIENCE: 

STATE OF THE ART AND PROSPECTS    i 

Ian Stewart 

Mathematical modeling in social science goes 
through a number of stages, including the 
construction of the model, experimental testing and 
data-collection, statistical analysis, and 
evaluation and modification. 

The article examines these processes first in 
a general context, and then more specifically with 
reference to catastrophe theory and (to a lesser 
extent) dynamical systems. Emphasis is placed on 
the new problems and possibilities raised by 
nonlinear models. 

There follow three case histories of work that 
(unusually in this area at this time) have passed 
through the main stages of experiment and 
evaluation.  These are: 

A. the work of Seif (1979) on hypothyroidism 
B. the work of Colgan,  Nowell and Stokes 

(1980) on territorial fish 
C. the work of Poston and Stewart (1978b), 

Peregoy and Zeeman (in press) on 
perceptual multistability. 

In each case it is shown that, as a result of 
the data-fitting exercise, new ideas and further 
topics for study have emerged which could not have 
been anticipated without the original model. 

Finally, some advantages and disadvantages of 
catastrophe models are discussed, and suggestions 
for future work are listed. 
-^ ^.U .U .U -1^^'^ -J^ -'- ^ -1^ >U .^ .r^ ^^ ^ _T. ..U -t_ ^T- ^T- _t- .'.. .t. .U .t. .1. .t. .1. .J. .J- .La^t. .U .U mt^mJ^JU.J^.JUJ^ .t. «U .U -U -JU -U kt. -I. .1. .t. 

The aim of this paper is to examine the general processes of 
mathematical model construction and testing in connection with the 
social sciences, as these relate to models based on dynamical systems 
theory and catastrophe theory. A general discussion of the problems 
and prospects is followed by a representative but not exhaustive 
series of case histories; a final summary is aimed more specifically 
at the modeling of administrative processes. 

I. THE MODELING PROCESS  - 

In most branches of science, the development and testing of a 
mathematical model will go through (at least) the following stages: 

A. selection or construction of a model 
B. acquisition of data 
C. presentation of data 

16 



D. comparison of theory with experiment 
E. adjustment of model 
F. extensions and further implications 

The process may be repeated several times until  a satisfactory 
theory results or until the effort is abandoned. 

Let me consider each stage in detail. 

(A) SELECTION OR CONSTRUCTION OF A MODEL 

Until fairly recently, as far as the physical sciences were 
concerned, the selection and construction took this form: "write 
down the equations." "The equations" would almost always be some 
system of ordinary or partial differential equations which 
supposedly described the behavior of the physical system being 
studied; and the object was to solve these equations for a given 
set of initial or boundary conditions. 

As mathematical models began to be introduced into other 
areas of science, such as biology and sociology, and as the range 
of mathematical models required in physical science grew, many 
other mathematical structures (such as groups, singularities, 
probability distributions, and networks) began to be used. Thus 
the process now takes two steps: 

1. Decide on an appropriate mathematical setting. 
2. Select or build a plausible model within that setting. 

The role played by Step 1 should not be underestimated: a 
different choice of setting, even for the same phenomenon, may 
suggest a radically different model. For example, a continuum- 
mechanical model of fluid flow will take a completely different 
form from a finite-element model, and require different 
mathematical techniques. 

Holt emphasizes the importance of getting the setting right 
before embarking on the construction of a model in his 
contribution to this study: "Getting the mathematical structure 
right is, at the early stages, as important as getting the numbers 
right " (page 40.of this report)." I agree. 

(B) ACQUISITION OF DATA 

That is, experiment.   Substages include: 

1. definition of variables 
2. measurement of variables 
3. design of experiment 
4. elimination of unwanted outside effects 

It is worth remarking that the choice of a model conditions 
the selection and measurement of data. The "wrong" model may 
suggest data that do not reveal the essential phenomena.    In 
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particular,  any smoothing or averaging of data may conceal multi- 
valued responses or other nonlinear relationships. 
(C) PRESENTATION OF DATA 

I mention this because it tends to be ignored, but can be 
very important, especially when more than two or three variables 
are involved or when the relation between them is nonlinear. A 
mass of numerical data is seldom very informative. It is 
necessary to find effective ways of presenting the data to make it 
possible to see the general structure involved. 

(D) COMPARISON OF THEORY WITH EXPERIMENT 

In the social and biological sciences this generally involves 
the application of statistical techniques to elucidate the 
important relationships between variables, or even to decide which 
variables or groups of variables are the most important. It may 
require suitable transformations of the variables before these 
methods can be used. 

(E) ADJUSTMENT OF MODEL 

Usually the model will involve adjustable parameters which 
must be chosen to give the best fit with experiment. Some 
measure of the goodness-of-fit is required. 

(F) EXTENSIONS AND FURTHER IMPLICATIONS 

A useful theory will suggest further conjectures, models, 
problems, experiments. A theory that explains only the data 
around which it was built is not especially useful!     ^ 

II. CATASTROPHE-THEORETIC MODELS 

Next, I want to take a look at each of these stages when a 
catastrophe-theoretic or dynamical systems model is involved. For 
simplicity I will talk of catastrophe models, but the problems and 
differences remain very similar if a dynamic is present, except where 
the detailed design of an experiment or statistical methods of testing 
the model is concerned. In these latter cases, it is hard to see how 
progress can be made except by first treating the simplest "elementary 
catastrophe" cases. In fact, I would suggest that a major reason for 
concentrating on the relatively simple catastrophe models is that they 
provide a good testing-ground for this style of modeling. They are 
admittedly far more simple in structure than might be desirable in 
some contexts, but they raise questions which ought to be tackled 
first in a relatively simple setting. If they cannot be dealt with 
successfully in the simple setting, the prospects for more complex 
models cannot be very good. 

A. SELECTION OR CONSTRUCTION OF A MODEL 

The traditional models used in social science are 
overwhelmingly linear as  regards  the underlying mathematical 
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structure. Statistical techniques, such as linear regression, 
correlation, cluster analysis, and factor analysis, rest on the 
often unstated assumption that a significant relationship between 
variables must be a linear one. Similarly, game theory is 
largely linear in character, and linear differential or difference 
equations are frequently used in preference to nonlinear ones. 

A major reason for this emphasis on linearity is not (as one 
would hope) that Nature tends to be linear. On the contrary. 
Nature is increasingly recognized as being highly nonlinear. 
Instead, linear methods are used because nonlinear mathematics is 
usually much harder than linear mathematics. 

In the absence of any effective techniques for dealing with 
nonlinearity, this approach can be defended on pragmatic groiinds. 
But, as nonlinear mathematics increases in power, it would seem 
advisable to consider putting it to good use. Of course the 
greater simplicity of linear methods has much to recommend it, but 
if a choice must be made between a linear model that is computable 
but wrong, and a nonlinear one that is harder to compute but might 
conceivably be right, then presumably the latter suggests itself 
more strongly. Of course there are many areas of statistics that 
deal with "nonlinear" relationships. But most of these are 
really just linear methods in disguise, coming in three stages: 

1. transform the variables somehow 
2. seek a linear relation between the transformed variables 
3. deduce a nonlinear relationship between the original 

variables. 

For example, suppose that two variables x and y are related as 
follows: 

X  -5  -4  -3   0   3   4   5 
y0345430 

Then the correlation coefficient is zero. That is, there is 
no (linear) relationship between them. But in fact there is an 
exact functional relationship 

y =(25 - X ) ' 

2 2 If we transform the data from x and y to X = x and Y = y 
then the  correlation  coefficient between X and Y becomes  -1: 
perfect negative correlation.   If instead we transform from x to 

Z = (25-x2)l/2 

then we get a correlation coefficient of 1: perfect positive 
correlation. So the same data, depending on the choice of 
transformation, are unrelated, positively related, or negatively 
related! 

What this  shows  is that  linearity is  crucial to  the 
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interpretation of a correlation coefficient. But it also shows 
that undue reliance on linear models might cause significant 
relationships to be overlooked, especially when there is a 
tendency to put data on a computer and analyze it using a standard 
linear regression package, rather than taking a serious look at 
the shape the data takes. 

In fact, consider any functional (i.e. single-valued) 
relationship 

y = f(x) 

Transform the independent variable x to 

X = f(x) ' 

Then 
y = X ' 

and there is a linear relationship between the transformed 
variables. 

Let me call any relationship, such as this one, which is a 
transform of a linear relationship, "pseudolinear." Then the 
majority of "nonlinear" models and methods used in statistics and 
social science turn out to be pseudolinear. 

The crucial feature of pseudolinearity is that the dependent 
variable y is single-valued in terms of x. For each value of x 
there must correspond a unique y. 

The types of relationship considered in catastrophe theory are 
in general multi-valued: there may be several possible values of y 
for a given x. These models cannot be pseudolinear: they are 
genuinely nonlinear. 

The experience of physics and biology is that Nature is quite 
often genuinely nonlinear. ( I mean by this that it appears to 
require genuinely nonlinear models: nonlinearity is a property of 
mathematical systems, not of Nature.) If, as seems reasonable, 
this also holds good in the social sciences, then there is a need 
for methods that can handle genuine nonlinearity. 

Curved things are much more complicated, and diverse, than 
straight things. The possible range of nonlinear models is so 
vast that some guiding principle is required to select significant 
types of models. The principle of parsimony--choose the 
simplest--presents itself. But what do we mean by "simplest"? 
The catastrophe theory answer is that we should avoid unnecessary 
"accidents" and use generic nonlinearities. In the context of 
equilibrium models, this means "assemble the model from the 
standard catastrophe surfaces." In many cases, the principle of 
parsimony can then be invoked to reduce the model to a single 
catastrophe form.   In other contexts similar reasoning should 
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apply,  although the appropriate class of "natural" models will 
vary from one setting to another. 

None of this proves anything nor is it meant to. The process 
of model-selection is necessarily heuristic. But the catatrophe 
theory approach is a natural one, based upon a proper 
understanding of the mathematical possibilities and their relative 
simplicity or complexity. 

The importance of the Thorn Classification Theorem is not that 
it "describes all possible types of discontinuous relationships." 
It does not. What it does do is demonstrate that certain types 
are of more fundamental importance than others. In the search 
for appropriate models, it is not unreasonable to try out these 
fundamental forms.  [See Brocker & Lander, 19 75.] 

To summarize: Catastrophe theory has definite potential in 
the area of model construction because it provides a versatile and 
flexible range of nonlinear models which are simple and natural 
from the mathematical viewpoint. This is one of the points that 
Markus makes in his paper. 

B. ACQUISITION OF DATA 

The problems of defining and measuring variables in the 
social sciences are well known. They derive from the difficulty 
of performing controlled experiments as much as from anything 
else: in the physical sciences, historically, definition and 
measurement have also proved difficult (even as simple a variable 
as time has caused tremendous problems, and heat and temperature 
were only treated successfully within the last century). While 
it may be true that catastrophe models do not make these problems 
easier, it is certainly true that they do not make them any 
harder. Although certain models in the catastrophe theory 
literature make no serious attempt to face these problems, this 
does not imply that they cannot be faced; merely that the authors 
were not at that point concerned to face them. (In expository 
articles, particularly, this is not especially surprising.) 
Existing methods will be adequate, or not, depending on the topic 
under discussion and the selection of variables treated, not the 
particular mathematical theory being used. 

It is at least conceivable that catastrophe theory might be 
able to ease some problems of definition and measurement. For 
example, the models may suggest natural choices of variables. The 
multi-valued aspects may reveal relationships, hence significant 
variables, that would otherwise be missed. I know of no strong 
examples where this has actually occurred, and I wouldn't want to 
emphasize it too much, but it is definitely a possibility. 

There may also be variables that depend on a catastrophe 
model for their very definition, for example, the coordinates of a 
cusp point or the size of a catastrophic jump. It is worth 
bearing in mind that correlation coefficients  and regression 
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coefficients depend similarly on a previous choice of model--in 
their case a linear one. They are not items which an 
experimenter would naturally think of measuring. One of the 
functions of a model may be to suggest useful quantities to be 
calculated; and it is again conceivable that the range of 
nonlinear models suggested by catastrophe theory might suggest 
fruitful new quantities to describe or detect important aspects of 
nonlinearity--just as the correlation coefficient describes an 
important aspect of linearity. 

There is one additional feature of catastrophe theory that 
is often misunderstood: its ability to reduce the number of 
variables in a problem. Thorn's Theorem says that, subject to 
certain technical hypotheses, with any number of state variables, 
under the action of up to four control variables, the typical 
behavior may be reduced to one of the standard models, having at 
most two state variables. This is a genuine reduction of 
complexity; the limitation to one or two state variables is a 
deduction from the mathematics, not a hypothesis of the model. 

It is, for instance, futile to criticize the model by Zeeman 
(1977, p. 3-8) of aggression in dogs, which uses a cusp 
catastrophe, on the grounds that this has a 1-dimensional state 
variable, whereas aggression is too complex to be measured by a 
single variable. This is doubtless true; but what catastrophe 
theory says is that even if one starts with, say, a thousand- 
dimensional set of variables that define the aggressive behavior, 
then, provided only two control variables are effectively 
operating, the model necessarily reduces to one in which some 
single combination of those thousand variables bifurcates 
according to the standard cusp geometry. Indeed any "random" 
combination of the thousand variables should suffice. So when 
Zeeman draws a single arrow and labels it "aggression," he is not 
claiming that all the complex details of aggressive behavior can 
be measured by a single variable. He is merely using the 
standard topologist's convention of drawing a multi-dimensional 
space as if it were 1-dimensional, or else abusing language 
slightly by labelling the reduced 1-dimensional variable 
"aggression" rather than something like "reduced measure of 
aggression." 

Again, the practical importance of this kind of reduction is 
less than clear. Conceptually, any reduction of dimensionality 
is extremely useful, but for practical experiments it would be 
desirable to exhibit the reduction explicitly. The real problem 
is to reduce the number of control variables by holding as many as 
possible constant. The inability to do this effectively is a 
major source of "noise" in experiments. In physics, one can 
purify copper, produce a uniform wire, and hold its temperature 
constant to discover Ohm's Law. But no one has yet been able to 
purify a dog, let alone draw it out to uniform thickness or hold 
its temperature constant. 
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C.PRESENTATION OF DATA 

It is surprisingly difficult to visualize multi-dimensional 
data. If points are plotted in the plane then the eye can often 
"see" whether they appear to lie on a curve, but it is already 
difficult to see whether points in 3-space lie on a surface, and 
it takes an unusual mind to be able to see whether points in 4- 
space lie on a 3-dimensional submanifold. In fact it is not at 
all easy to find an effective way to present data in 4-space. 

One possible way to make progress is to guess at the most 
likely shape for the surface (if there is one) and then to try to 
transform the data in a way that will permit such a surface to be 
located. For example, if one suspects that the data lie on the 
surface of a sphere, then it is possible to select a candidate for 
the center point, compute distances to the data points, and see 
whether these are roughly equal. 

This method relies on making the right initial guesses, but it 
appears to be orders-of-magnitude more difficult to seek a surface 
of unknown form. Since catastrophe theory suggests a specific 
range of types of surface, it may sometimes assist in the 
presentation of multi-dimensional data. 

D. COMPARISON OF THEORY WITH EXPERIMENT 

Despite the cautionary remarks made by Savage, he 
acknowledges that catastrophe models do pose interesting questions 
for statistics, especially as regards multi-valued relationships 
or complex nonlinearities. In fact I would suggest that 
catastrophe theory has an important contribution to make to the 
development of statistics. 

Firstly, as I have remarked above, traditional statistics is 
largely linear (or pseudolinear, which is no more adequate in many 
cases). The usual goodness-of-fit or confidence tests, based on 
the normal probability distribution, also possess this (pseudo) 
linearity. From the qualitative point of view, the important 
feature of the normal curve is that it is unimodal: it has only 
one maximum. It represents the deviations of a variable about a 
single most-likely value. 

Variables that undergo statistical fluctuations about several 
likely values are much more rarely treated in statistics, but the 
experience in physical science is that such variables are likely 
to be relatively common. Genuine nonlinearity requires multi- 
modal distributions. Catastrophe theory requires that such 
questions be tackled systematically, but it also assists in this 
by ensuring that a limited range of basic types of nonlinearity 
naturally present themselves for initial treatment. Considering 
how much work and how many useful statistical ideas derive from 
the normal distribution, it is likely that generalization to 
suitable multi-modal distributions will be a very fruitful 
direction for research. The work of Cobb (1978) takes some 
useful steps in this direction, but much more remains to be done. 
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Cobb in particular can deal only with the "cuspoid" 
catastrophes, of co-rank 1. A student of mine, Alexander Galis, 
has derived some extensions to umbilic catastrophes, and indeed, 
to arbitrary co-rank, but his work is in a very preliminary form. 
However, I see little harm in concentrating on, say, just the cusp 
catastrophe in initial research. Before decrying this as a much 
too limited aim, it is wise to recall the vast effort expended on 
the normal distribution, which from the qualitative point of view 
is even more limited than the cusp. I believe we should learn to 
walk before we try to run, and I suspect that many attempts to 
assess the likely role of catastrophe theory models slip up by 
asking for too much, too early. Savage would like to see a 
theory of the statistical estimation of a dynamical system. So 
would I. (Indeed I think we need more: a coherent method for 
estimating the simultaneous properties of an entire family of 
dynamical systems, undergoing bifurcation.) However, there isn't 
yet even a good statistical theory of equilibrium states of 
dynamical systems or of their bifurcations. By all means let us 
bear in mind that what we are trying to do is but one step towards 
something that is obviously far more versatile, but let us also 
avoid asking for the moon. 

E. ADJUSTMENT OF MODEL 

It is not enough merely to find a model that fits data fairly 
well. One would like to find one that does this as well as 
possible. Catastrophe models come with several adjustable 
parameters--indeed, one can adjust parameters indefinitely by 
making changes of variables. In practice, however, these 
changes have to be of fairly limited form, and the initial data- 
fitting can be done by assuming that changes in control variables 
are linear. (This may sound curious, given my criticisms of all 
things linear, but the point is that the theory says that the 
relevant coordinate changes are smooth, and hence, approximable by 
linear mappings.) 

Adequate measures of goodness-of-fit of nonlinear models 
pose, I feel, a difficult but crucial problem. It is not a 
problem that can be solved by routine application of techniques 
developed for linear models: the whole phenomenology is completely 
different. For example, imagine data consisting of four points 
at the vertices of a square. These fit exactly any of the 
following nonlinear models: 

a circle, 
a square, 
two diagonals crossing at the center, 
two parallel sides of the square, 
the other two parallel sides of the square, 

and many other alternatives can be invented. So which fits best? 
I doubt that this is a meaningful question, as it stands. It 
cannot be decided just by looking at the existing data. It seems 
to  require the collection of more data to distinguish between the 
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plausible alternatives. 

It should be much less hard to devise measures of goodness- 
of-fit within a particular special class of models. In practice, 
that is what happens now with linear models: one measures how well 
the model fits in comparison with other linear models. 
Similarly, one might be able to say of a cusp model that it fits 
better than other cusp models or even that it also fits better 
than any linear model. But it is unlikely that it will be 
possible to assert with confidence that it fits better than any 
other conceivable nonlinear model might. This is simply asking 
too much: no scientific theory yet has been able to prove that no 
other possible theories can be better. 

It is, therefore, very important indeed to select an 
appropriate class of models in advance of detailed data-fitting. 
I suspect that the only way to do this, in practice, will be by 
acquiring experience from such an exercise. This is how most 
practicing statisticians work: They have experience of a standard 
range of models which suggests to them which one might be 
appropriate. Catastrophe theory models, or any other additions 
to the existing range, will require similar experience. At the 
present time, experience is very limited indeed, and the only 
remedy for that is to make repeated attempts to fit catastrophe 
models to actual data and to observe what happens. In order to 
get a good feel for this kind of data-fitting, it would not be a 
bad idea to concoct "fake" data, known to lie on (say) a cusp 
catastrophe surface or be drawn from some family of multi-modal 
distributions, and subject it to independent analysis using 
statistical procedures intended to test for such things. I would 
also like to suggest a parallel and somewhat iconoclastic 
numerical experiment: subject similarly concocted nonlinear data 
to the standard procedures of factor analysis, cluster analysis, 
and regression.   The results might well be surprising . . . 

F. EXTENSIONS AND FURTHER IMPLICATIONS 

Critics of catastrophe theoretic modeling have often 
asserted that it is of no advantage to know that a catastrophe 
theory model fits the data, because if it does, it is simply 
restating the data itself. "Even if it looks like a 
catastrophe surface, this tells you nothing you didn't know 
already." 

I don't find this argument very compelling for a number of 
reasons. One is that it seems to apply to any exercise in 
empirical data-fitting. Kepler's ellipses told him nothing he 
didn't know already. Mendel's observation of genetic 
proportions told him nothing; indeed worse than that, it merely 
gave him a bad approximation (1:2:1) to data that were doubtless 
far more accurate (1001:2001:999 or whatever). Ohm's Law (voltage 
is proportional to current) says no more than the set of data 
points (lying on a straight line) that inspired it. 
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But the point about Ohm's Law is that while it says nothing 
apparently new about a single piece of wire, it applies to all 
pieces of wire; and it suggests a new concept: electrical 
resistance. One may then ask: "How does the resistance vary?", 
either from one substance to the next or with temperature or with 
the state of the weather in Honolulu. Similarly, while the fact 
that aggression in a particular species of fish fits a hysteresis 
loop may tell us nothing we didn't know when we first wrote down 
the data, we cannot ask "How does the size of the hysteresis loop 
vary from one species to another or one individual to another?" 
until we have recognized that there is a loop to be talked about. 

In other words, what data-fitting can do is to suggest that a 
particular mathematical structure is appropriate. That structure 
will itself raise questions. What makes orbits elliptical? Why 
do genetic proportions look like the top end of the Pascal 
triangle? Is something combinatorial going on? It is not 
necessary to agree with Dirac's remark to the effect that "it's 
more important whether your equations are beautiful than whether 
they agree with experiment" to appreciate that finding a good 
mathematical setting is often a necessary step towards properly 
understanding what is going on. 

More specifically, however, even the current rather limited 
experience of fitting catastrophes to data shows at once that this 
exercise does lead to new ideas that, while no doubt implicit in 
the data, are not sufficiently clear in the data to attract any 
attention. (I have little sympathy for those who argue that if A 
logically implies B, then B tells us nothing that A didn't. In 
particular, we only can say this after the logical dependence of B 
on A has been established. To put it another way, implicit 
results aren't much use until someone makes them explicit.) The 
case histories that follow this section provide concrete instances 
to supplement the above generalities. 

III. CASE HISTORIES 

This section will give brief descriptions of three attempts to 
apply catastrophe models and to illustrate how these led to furtner 
ideas, theories, or experiments. ' 

A. HYPOTHYROIDISM 

This work is due to Fritz Seif (1974) at the University of 
Tubingen. In a normal individual the brain controls metabolism 
through a hormone chain 

HYPOTHALAMUS --> PITUITARY --> THYROID --> METABOLISM 
a   v>>      b    /    c 

negative 
feedback 

where the hormones are: 
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■i   a = protirelin 
b = thyrotropin 
c = thyroxine + triiodothyronine 

Hypothyroidism  occurs  when  too  little  c  is  produced; 
hyperthyroidism occurs when too much c is produced. 

To treat hyperthyroid patients, some of the thyroid gland is 
removed surgically to reduce the production of c. 

However, after such treatment, about one patient in three 
begins to display symptoms of hypothyroidism (call these "treated" 
patients) and the other two-thirds return to normal. This effect 
is due to the pituitary losing its ability to respond to a. Seif 
devised a measure, X, of this response-ability and noticed that on 
data from 422 measurements, X is bimodally distributed for some 
values of (b,c) but not for others. (It is interesting to 
conjecture what would have happened had he merely shoved the data 
through a standard linear regression package.) This suggested to 
him that a cusp surface model might be appropriate, with (b,c) as 
control variables and X as state variable. This in turn 
suggested a cure: inject b until the state X undergoes a 
catastrophic jump, then stop the injections, and let the patient 
return to normal. This cure worked. (Note that at this point 
the model was entirely qualitative and no data-fitting had yet 
been done except very roughly, by eye.) 

However, Seif went further. He fitted data quantitatively 
by an iterative least-squares method, obtaining excellent results. 
He then devised a micro-model of the behaviour of the pituitary to 
explain, more dynamically, why such a cusp surface might arise. 

B. TERRITORIAL FISH 

Zeeman (1975, p. 13-14) suggested, starting from observations 
by Konrad Lorenz (1967), that the aggressive behavior of 
territorial fish should involve, among other things, a hysteresis 
loop in the level of aggression plotted against the distance of 
the invader from the nest. That is, the fish has two different 
radii of territory: the defense radius RD (to which distance 
another fish must approach before being attacked), and the attack 
radius RA (beyond which it must retreat before the attack ceases). 

Colgan, Nowell and Stokes (1980) tested this theory using a 
wooden dummy fish in Lake Opinicon, Ontario, to mount fake attacks 
on Pumpkinseed Sunfish. They observed a distinct hysteresis 
effect with RD being about 13 cm. and RA about 18cm. 

They also realized that the existence of two radii had 
important consequences for the geometry of the packing together of 
nest territories in the lake. With only a single perimeter, 
territories would evolve until they were packed rim-to-rim. Any 
fish attempting to move around the lake in search of food would 
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spend all of its time fighting one battle after another with the 
enraged property-owner. 

With the double perimeter, however, territories would be 
arranged so that the attack perimeter of one would coincide with 
the defence perimeter of the other, leaving a "demilitarized zone" 
between the nests, through which any fish might pass unmolested. 
This was a novel concept in the subject area. It had not been 
obvious to anyone until the theory had been confirmed and its 
implications began to be studied seriously. 

C. MULTI-STABLE PERCEPTION 

I will now describe some work done jointly with Tim Poston 
and (at a later stage) the psychologist Peter Peregoy, on the 
perception of ambiguous figures. The work with Poston was 
published in Behavioral Science (1978b); the work with Peregoy has 
recently been accepted by Psychological Bulletin (in press); and a 
further study by Peregoy and Zeeman is in preparation. 

There are certain standard drawings that people can perceive 
as representing more than one object. The particular drawing in 
our work resembled both the face of a man and the figure of a 
kneeling woman. Hysteresis effects in the perceptual process had 
been observed by researchers who devised a whole sequence of 
drawings in which features were selectively biased to make the 
result more manlike or more womanlike. Poston and I suggested 
that a cusp catastrophe model might be suitable, and if so that it 
would be possible to devise a 2-dimensional array of pictures that 
would give the whole cusp surface. 

Poston and I are both mathematicians and we did not have 
the expertise to test our ideas experimentally. But recently, 
Peregoy and I (in press) carried out a series of experiments using 
both British and American students. We drew the array of 
drawings on separate cards and asked students to rate these on 
a scale from -5 to +5. We used a version of Cobb's computer 
program to find the best fitting cusp catastrophe surface, 
obtaining a good fit with the data and one that was better than 
any linear model. When the group of subjects was broken down by 
categories, small variations in the cusp position emerged, but its 
position was remarkably consistent. 

In these experiments, the drawings were shown in a random 
pattern. We decided to test the "delay rule" of catastrophe 
theory by presenting drawings in sequences and observing the 
responses (which, according to the convention, can now be 
predicted and are single-valued; the value, of course, depends on 
the choice of path through the control plane). We found that on 
the first pass along a sequence, the delay convention appeared to 
be operating; but even on a second (reversed) path, the subjects 
typically had learned to anticipate the change in perception. 
They jumped not on the catastrophe bifurcation set, as predicted 
by delay convention,  but close to the Maxwell set.   In fact they 
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appeared to jump sooner than the Maxwell set, anticipating the 
change slightly before  it really happened. [For  a further 
discussion of the delay rule and Maxwell's rule, see Zeeman, 1977, 
p. 306-310.] 

Thus there appears to be a learning process involved whereby 
the subject's choice from the conflicting stimuli is conditioned 
by his prior experience in a similar situation. It is as if the 
original random selection from the two possible percepts is 
replaced by a more considered judgement, based on previous 
experience and recent history. A theory of decision-making 
devised by Zeeman some years ago involves precisely this type of 
effect, and Peregoy and Zeeman are currently adapting it to the 
perceptual context. 

Without the original catastrophe surface model, it would not 
have been likely that anyone would have tested the convention 
whereby subjects jumped from one surface to another; because it 
would not have been clear that there were any surfaces there to 
jump between. 

IV.  MODELS IN ADMINISTRATION 

Finally, let me turn to the main purpose of this report. While a 
fairly large number of catastrophe theoretic models have been proposed 
in connection with social science, the whole subject is in an early 
state of development. Few models have been adequately tested 
against data, and many are "off-the-cuff" suggestions by researchers 
new to catastrophe theory or by mathematicians new to the social 
sciences. In such circumstances enthusiasm can outweigh due caution 
and novelty alone may provide a reason for publication. However, the 
subject cannot be permitted to remain in such an immature state 
indefinitely. 

It would not be possible at this time to assess the likely role 
of catastrophe theoretic or dynamical systems models in administration 
by restricting attention entirely to that field. The relevant body of 
work is not sufficiently large. In any case, the nature of this rather 
interdisciplinary exercise means that experience in one area of 
application tends to carry implications for other areas. 

It seems wisest to judge prospects by looking at those studies 
that have carried the modeling process through to a proper 
conclusion, at least up to the point of obtaining data and comparing 
theory with experiment. Several such models relate fairly closely to 
administration in that they study some kind of decision-making 
process. Of the case histories above, those on territorial fish and 
on perception fall into this category: The fish must make a decision 
when to start or cease his attack (it is the male Pumpkinseed Sunfish 
who defends the nest), and the experimental subject must decide 
between two conflicting and ambiguous perceptions of the stimulus 
materials.■ 

The other case history concerns an attempt to influence the 
"natural" course of events in order to achieve a desired goal  (curing 
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the patient), paralleling an important administrative function. 
Therefore, two distinct types of model appear feasible and have been 
pursued with reasonable success: i 

A. understanding how decision-making processes act 

B. understanding how to control a system which, in principle, may 
take up several states, so as to force it into the required 
state. 

These two functions, comprehension and control, have obvious 
value. 
V. ADVANTAGES  ,     , 

What advantages do catastrophe theoretic or dynamical systems 
models appear to offer? 

Several of the participants in this study have emphasized the 
same basic points. The theory suggests a natural range of models for 
processes exhibiting typical features of nonlinearity, such as 
multiplicity of states, sudden discontinuities, hysteresis and other 
history-dependent phenomena, divergent behavior, and so forth. If I 
understand Savage's remarks correctly, it appears that a common 
reaction to such observed phenomena is to seek ways to eliminate them, 
such as, introducing additional variables to separate out a 
multiplicity of states. This has definite attractions but I doubt 
its wisdom. First, a major problem in the area is the influence of 
large numbers of variables, and it seems less than sensible to 
introduce new ones if that can be avoided. Second, if this approach 
had been tried in other areas of science (notably physics), most of 
today's theories would never have been discovered. The nonlinear 
phenomena listed above are to be expected; they are natural and 
commonplace. To treat them as pathologies to be avoided even at the 
cost of complicating the model is to misunderstand the way that a 
complex system is likely to function. To some extent the social 
sciences are trying to work within a paradigm of the physical sciences 
that does not, in fact, correspond to what happens in that area. 

VI. DISADVANTAGES 

Nonlinear mathematics is less familiar to most scientists than 
its linear counterpart. It tends to be more subtle and more 
difficult. Fundamental notions such as estimates of goodness-of-fit 
are hard to define. 

To estimate the quantitative behavior of a dynamical system from 
empirical observations is a virtual impossibility unless the system is 
unusually simple or unless it can be observed repeatedly with 
different initial conditions. This is seldom possible in the social 
sciences. However desirable such a project may be, it is often going 
to be necessary to settle for much more partial information. 

To some extent, this is why catastrophe theory (or more 
accurately, elementary catastrophe theory) concentrates on the 
attractors,  that  is,  the  long-term behaviour of the system or  its 
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equilibrium behavior.  There is a greater chance of saying something 
definite. 

It should not be forgotten that many traditional models also 
involve taking a far more limited view. When using linear regression 
to analyze a trend, it is seldom asked whether this trend has settled 
into some kind of dynamic equilibrium so that it will persist in the 
long run. Nor is it asked, "What dyanamic is holding the system to 
the trend line?" But few people fail to ask similar questions of a 
catastrophe theoretic model. I suspect that one of the roles of 
nonlinear modeling will be to reveal hidden assumptions in the 
traditional linear ones. 

An additional disadvantage is the current lack of experience in 
using and testing catastrophe theoretic models and an almost total 
lack of experience in more general dynamical ones. This creates, 
among other things, misunderstandings. It can only be remedied in 
the longer term as experience accumulates. Currently, it is best kept 
under control by ensuring that any research project has access to 
workers with expertise in all the fields involved. There is a 
shortage of, for example, mathematicians with an interest in 
developing models in social science. 

VII.  FUTURE WORK 

The advantages of nonlinear modeling via catastrophe theory or 
dynamical systems are manifest, provided the approach can actually be 
made to work. Some critics have claimed to be able to prove that 
this kind of modeling cannot succeed, but such extensive claims must 
be viewed with some skepticism (especially as many rule out useful 
applications to the physical sciences where the theory has been highly 
successful). On the other, hand, the disadvantages should urge a 
degree of caution. The case histories above show that the problems are 
not insuperable. I do not expect to see any rapid or explosive 
development of nonlinear modeling in social science, but I do think 
that it is important in the long run to develop experience in such 
modeling because "Nature is nonlinear" and will not be tamed by a 
linear approach, however elaborate. (Witness the general failure of 
linear macroeconomic models.) Future work should, among other 
things, deal with the following: 

A. obtaining a sufficient body of experience of nonlinear 
modeling in an adequate variety of sociological systems 

B. paying proper attention to the novel problems raised in the 
design of experiments required to test nonlinear models 

C. ditto for the statistical analysis of data. (Much theoretical 
work is needed on nonlinear statistics. In the absence of 
suitable field data it may be possible to conduct numerical 
experiments with "fake" data. The traditional methods might 
be tested in a similar way with data known to be derived 
from, say, a catastrophe surface; but field data would be 
preferable.) 
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D. encouraging contacts across the necessary disciplines and 
developing suitably expert teams of researchers 

E. identifying topics suitable for catastrophe theoretic 
modeling in which the problems of defining and measuring 
variables can be dealt with, allowing the modeling process 
to be pushed through to a proper conclusion (positive or 
negative). 

If the approach appears to be successful in enough cases, it will 
be necessary to extend the techniques to cope with the great variety 
of nonlinear and dynamic phenomena not reducible to the elementary 
catastrophes. Mathematically, catastrophe theory has matured well 
beyond the parts that are most commonly presented in nonspecialist 
expository articles. There are for example at least twenty different 
contexts in which the general point of view of elementary catastrophe 
theory can be pushed through to useful conclusions (catastrophes with 
symmetry, boundaries, in infinite-dimensional spaces, breaking 
symmetry, referring to periodic rather than steady-state behaviour, 
etc.) Work on applications will eventually have to reflect this 
breadth. 

VIII.  CONCLUSIONS 

While catastrophe theory or dynamical systems models have not 
always been as successful in the past as the more exuberant 
expositions of the theory have tended to suggest, they have equally 
not been as unsuccessful as the more exuberant critics have indicated. 

In view of this, it would be unwise either to support or to not 
support a particular research project purely because it makes use of 
(some version of) catastrophe theory or dynamical systems theory. As 
always, what should count is the competence of the people involved, 
their suitability for the project, and the potential importance of the 
topic. 

Catastrophe theory is sometimes considered to be too simple to 
handle sociological modeling and sometimes too complex to be useful. 
While I can see that in principle both views might be correct, it 
might also be argued that it is treading, with some chance of success, 
the very fine line between what appears complex today and what will be 
simple tomorrow. If that is so, then its pursuit is amply 
justified. 

It is pointless to predict the likely knowledge to be gained if 
the catastrophe theory approach works. Each individual application 
which has succeeded (even in limited terms) has shown its own 
unexpected twists and problems. But there are definite grounds for 
optimism that these techniques are worth developing, at least in some 
areas. Administrative and decision-making processes bear a close 
resemblance to some existing work that can be counted a reasonable 
success, and this suggests that it may be worth taking a closer look 
at those areas in the future, in particular by identifying suitable 
topics, not just for suggesting speculative models, but for 
experimental analysis and the collection of real data. 
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COMMENTARY 

This is an excellent contribution interweaving three major 
themes: 

1. a general discussion of mathematical modeling in the 
social sciences 

2. a critique of the appropriateness of linear models, the 
reasons for their pervacity, and the suppression of 
modeling assumptions inherent in their use 

3. an argument for an increase in the use of nonlinear 
methods in general and catastrophe theory in particular. 

The discussion of mathematical modeling is clearly the work of 
someone who has thought through and worked on social science research 
problems. It is a timely discussion and would be a good candidate for 
replacing the standard sort of "hypothesis testing" blurb usually used 
as a basis for "research methods in the social sciences"-type courses 
(which usually only address nuts and bolts aspects of Stewart's second 
stage with all kinds of hidden assumptions about linearity). 

Some thoughts on linearity are stimulated by Stewart's article. 
Linearity, the existence of some kind of naturally occuring linear 
relationship among variables, is something that cannot even make sense 
in the social sciences. Scales in the social sciences are not 
universal, not based on naturally occuring constants, and essentially 
arbitrary inventions of researchers. The concept of linearity is 
defined only at the level of scale. Therefore, linearity is not in 
the class of properties that social science variables are allowed by 
nature to possess. In fact, one of the ways social science research 
can turn out to "look good" is for the reasearcher, through intuition, 
experience, and insight, to choose scales for variables in such a way 
as to end up with a linear relationship among scaled variables. This 
"choice of scale" should not be seen as unworthy. Indeed, this is 
often a contribution of great value. We should keep in mind, however, 
what is proved:  the variables themselves are pseudolinearly related. 

Stewart's term "pseudolinear" helps to make the point that 
scales are man-made objects in the social sciences. In a more 
mathematical discussion, pseudolinear is really a topological concept. 
A collection of variables (unsealed) would be pseudolinearly related 
if it is theoretically possible to scale each of them in such a way 
that the scaled variables are linearly related. (Scaled variables x, 
y, z are linearly related if there exist non-zero constants a, b, c 
and a constant A such that the equation ax + by + cz = A holds while 
X, y, z vary. Linear is an algebraic concept.) Then "genuinely 
nonlinear" could be defined as "not pseudolinear," again a topological 
concept. The philosophical point seems to be that (social) science is 
more topological than algebraic in character. 

Stewart's argument for the need to break away from pseudolinear 
models is compelling. His argument for settling on catastrophe theory 
as a replacement for linear models, on the other hand, is one that 
could be used to argue for keeping the linear ones: There is, in 
fact, no point in restricting social science to any class of models 
just because they are simpler and easier to deal with than the ones we 
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are choosing to ignore. The point is, really, that elementary 
catastrophe theory represents the first step beyond pseudolinear 
theories in a topological hierarchy of complexity. Stewart is 
advocating walking before running, but he isn't saying we should 
never run. On the other hand, Stewart illustrates as well as 
possible (at this early stage of its use) that catastrophe theory can 
play an important role in modeling genuinely nonlinear phenomena in 
the social sciences. He also points out that catastrophe theory 
contains" all pseudolinear relationships among variables, so that 

pseudolinear models are not being tossed aside. A point to make 
explicit is that, while nature is almost never linear, it is quite 
often pseudolinear, so in fact the research scheme  ^ 

define variables 

scale variables 

look for linear relationships 

is  not  destined to failure all the time.   (The  emphasis,  however, 
should be shifted from the second arrow to the first.) 

The point about scaling, and the issue of "linear vs. nonlinear," 
is largely irrelevant to catastrophe theory applications. If 
variables x, y, z,... are psuedolinearly related, then any one of them 
can be shown to be a (possibly nonlinear) single-valued function of 
the others. Catastrophe theory would offer a setting for modeling 
phenomena in which some measureable quantity is "determined by" 
certain parameters but is not a (single-valued) function of those 
parameters. 

A way of expanding (pseudo)linear models goes as follows. 
Suppose we have "Theory X" that states the observed phenomenon P is 
determined by parameters a,b. (A natural presumption to make at this 
point is that Theory X states P is a function of a,b. This is the 
assumption of pseudolinearity!) Experiment or scaling/measurement, 
however, produces evidence that P may be in different states for the 
same values of a,b. That is, P is not a function of a,b; P is 
multivalued.  There are two ways to fix the situation: 

1. Find more parameters upon which P may depend (thus 
contradicting Theory X and/or casting doubt on the 
experimenter's ability to control unwanted parameter 
variation). 

2. Re-examine the phrase "is determined by" in Theory X. 
Perhaps the phenomenon P can be observed only when certain 
utility (or probability, or energy) functions are maximized 
(or minimized). For example, it could be that each pair of 
values for a,b determine a utility function F(P), where P 
ranges over a continuum of posible manifestations, and the 
observed phenomenon is one of maximal utility. Thus, the 
observed phenomenon is  determined by a,b to satisfy the 
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equation ■  - 

'"'' ' ■ 6F/6P = 0. 

Allowing a,b,P to vary, this equation defines a surface in 
a,b,P-space, and Theory X says an observable with parameter values a,b 
must lie on the surface. If the surface is "single-sheeted" over 
every point in the a,b-plane then we have verified pseudolinearity-- 
observed P = fcn(a,b). If the surface is "multisheeted," as 
experiments predicted, we have a genuinely nonlinear model to which 
catastrophe theory applies directly. Thus, neither Theory X nor 
experimental findings are contradicted. 
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APPLICATIONS OF CATASTROPHE THEORY IN THE SOCIAL SCIENCES: 
ISSUES IN A PHILOSOPHY OF INQUIRY 

Robert T. Holt 
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This article begins with a "methodological 
paradox" concerning the difference between testing 
theories in social science and physical science and 
the difference between point predictions and 
correlations. The social sciences must find a 
different way to improve the process of theory 
evaluation since improved measuring techniques will 
not in practice solve the problem. The role of 
classification schemes is raised as one possible 
line of progress. What distinguishes a "good" 
(i.e., fruitful) classification scheme from a "bad" 
one? The suggested answer is that a good scheme 
"gets the right structure" for the problem, that 
is, finds an appropriate setting. 

Catastrophe  theory has  the potential   for 
developing "good" classifications because 

(a) it provides structurally  stable,  i.e., 
robust models 

(b) it is qualitative 
(c) it  makes predictions  that,  unlike 

correlations,    are   closer  to   the 
physicist's  "point-prediction" paradigm, 
and in particular can easily be falsified 
if wrong. 

Every scholar during his career encounters certain works he finds 
particularly cogent to his research and that affect its direction and 
development. Over 10 years ago I was struck by a trenchant article by 
Paul Meehl (1967) entitled, "Theory testing in psychology and physics: 
A methodological paradox." While concerned specifically with 
weaknesses in research design and measurement in psychology, I think 
its disturbing argument applies to much quantitative empirical work in 
the social sciences more generally. I shall argue in this paper that 
a philosophy of inquiry employing a mathematical system with the 
properties of catastrophe theory as an aid to description and 
classification can help overcome the weaknesses that Meehl identifies. 

MEEHL'S PARADOX 

Let me highlight the paradox by quoting Meehl's statement of it 
and then summarize his argument. 

In the physical sciences, the usual result of 
an improvement in experimental design, 
instrumentation,  or numerical mass of data is  to 
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increase the difficulty of the "observational 
hurdle" which the physical theory of interest must 
successfully surmount; whereas, in psychology and 
some of the allied behavior sciences, the usual 
effect of such improvement in experimental position 
is to provide an easier hurdle for the theory to 
surmount. Hence, what we would normally think of 
as improvements in our experimental methods tend 
(when predictions materialize) to yield stronger 
corroboration of the theory in physics, since to 
remain unrefuted, the theory must have survived a 
more difficult test; by contrast, such experimental 
improvement in psychology typically results in a 
weaker corroboration of the theory, since it has 
now been required to survive a more lenient test, 
(p.103-4) 

Meehl's explication of a paradox is detailed and complex. For 
the purposes of this paper let me present a simplified version which 
is, in effect, a special case of a more general and powerful argument. 

Hypotheses in the behavioral sciences are typically relational. 
In the simplest case, a linear relationship is posited between two 
variables and is tested by stating the relationship as a correlation 
coefficient. (Sometimes the research design calls for a statement in 
the form of a null hypothesis.) A correlation coefficient is a number 
in the range from -1 to +1. If there is no linear relationship 
between the variables, the correlation coefficient would be zero. But 
there are an infinite number of points between -1 and +1. A 
correlation coefficient of zero is infinitely improbable. Thus, there 
is an a priori probability of 1 that any two variables will be 
linearly correlated and that any relational hypotheses will be 
confirmed (or the null hypothesis rejected). 

Anyone familiar with the type of work that follows in the tradition 
outlined above would immediately raise two objections to what is but a 
caricature. First, "no relationship" between variables is not defined 
as a zero correlation; there is some range +e that is treated as 
effectively zero, and there is, of course, a finite a priori 
probability that the value of the coefficient will fall in that range. 
The second point is that most hypotheses in the tradition that Meehl 
is dealing with are directional. They posit not only linear 
relationship, but a relationship in a specific direction. 

The first objection gets to the heart of the Meehl paradox. Of 
course there is a range of values around zero that is treated as 
effectively zero. The greater the sampling and/or measurement error 
and the less demanding the research design, the larger is that range. 
Thus, improvements in research methodology allow the researcher to be 
more and more confident that correlations near zero are meaningful, 
and thus make it easier for hypotheses and the theories from which 
they are derived to be confirmed. 

But  if 
coefficients 

the hypothesis being tested is  directional,  then only 
of  greater than zero or less than zero (but  not  both) 
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serve as confirming evidence. This means that the a priori 
probability of any directional hypotheses being confirmed is only 50%. 
Those, however, are not bad odds but still present a dismal picture to 
one who demands tough standards for theory testing. 

The actual situation is even worse. Suppose a scholar posits a 
certain relationship as being consistent with, if not actually derived 
from, a given theory. His empirical tests, however, provide evidence 
that there is a relationship opposite to the one he initially 
hypothesized. There are so many "theories" floating around social 
sciences that it is not difficult to develop a seemingly respectable 
ad hoc explanation of this contrary finding. The clever investigator 
can write an article expounding on the results of his research and the 
"theory" it supports. Meehl ridicules this specious scientific 
procedure in psychology. Think what his reaction would be to the 
scholar who collects masses of data, develops an intercorrelation 
matrix, and devises clever explanations of "significant" 
relationships. 

In effect, then, even for the directional hypotheses there is an 
a priori probability of 1 that some theory will be supported by the 
finding, even though it may be different from that which gave rise to 
the initial investigation. 

How do the natural sciences differ? Briefly, their hypotheses 
are typically point predictions: they predict a specific value. 
Empirical findings on either side of the point disprove the 
hypotheses. Elimination of measurement error and sampling error and 
improving research design reduce the size of the space within which 
empirical findings support the hypotheses, and thus, make verification 
more difficult. 

I do not wish to linger over the paradox Meehl raises. It is 
certainly something to discuss and debate. At this time I hope you 
will agree that at least some of the theory testing in the fields in 
which we are interested suffers from the weaknesses he identifies. 
What can we do to improve matters? 

Let us recognize at the outset that we cannot simply mimic the 
procedures followed in physics that he holds up as an ideal. Our 
theoretical formulations simply do not have the deductive power to 
produce hypotheses in the form of point predictions. It is to 
strengthen that deductive power that we must turn if we wish to 
eliminate the fatal weakness. 

) 
In physics that deductive power is largely the product of the 

statement of theories in mathematical form. The hypotheses to be 
tested are formally derived mathematical theorems. Rules of 
interpretation link the symbols in these mathematical statements to 
empirical reality and measuring instruments are calibrated in terms 
which are commensurate. While economics has moved a long way in this 
direction, theories and research in political science and sociology-- 
particularly those which deal with phenomena that have long time 
Constance like wars, revolutions, and social change--have not. 
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If the history of science provides any guide, there are a number 
of ways to proceed to increase the deductive power of our theories. 
One is to work on measuring instruments and quantification letting the 
theory follow the data generated by improved instruments. The path of 
progress would be from new and better measuring instruments to 
empirical generalizations from the data collected to stronger and more 
deductively powerful theories. Coleman (1975) has made a compelling 
argument that this is a promising way to proceed. I am, however, very 
skeptical about achieving any significant breakthroughs in measuring 
instruments for the study of social processes with long time 
constraints. 

If improved instrumentation and measurement (i.e., 
quantification) is an unlikely first step towards hypotheses that 
yield point predictions, one might explore the opposite tack. One 
could attempt first to state principles as formal axioms and develop a 
rigorous theory through strict deduction. This task is far too 
mammoth to attack directly. If the axioms concerned fundamental human 
behavior (perhaps principles of social learning), then an enormous 
intellectual edifice would be erected by the time we had any theories 
related to processes for which the time Constance is measured in 
decades or centuries. But furthermore, the axiomatization of 
scientific theories does not typically occur until a great body of 
reliable theory has been built up in other ways. 

DESCRIPTION, CLASSIFICATION, AND GENERALIZATION 

Let us turn to something more prosaic. Any handbook on 
methodology and theory building will have chapters on description, on 
classification, and on empirical generalization which emphasize the 
importance of each, but which rarely link them together. We are told 
that "meaningful" or "proper" classification schemes (like the 
taxonomies of Linneaus or Mendeleev) are important to generalization 
and theory building. But we are not given any criteria on the basis 
of which one can distinguish the "good" from the "bad" typology before 
a valid theory has been developed. If this is the case how do we know 
what is a good classification in the sense that it will facilitate 
tneory building and particularly theories with deductive power? 

Consider the problem as one beginning with description. How 
would one describe a killer whale and a great white shark in such a 
way that one would classify the former as a mammal along with a bat, a 
human, and a giraffe, and the latter as a primitive fish? That is the 
kind of classification that facilitated theory building. But it is 
surely not the one which emphasizes obvious similarities. 

When my colleagues and I attempted to describe the time paths of 
variables involved in the outbreak and ending of World Wars I and II, 
it was a classificatory problem which, among others, concerned us. 
Did the two wars belong to the same class of phenomena in the sense 
that both killer whales and Bengal tigers are mammals, or in the sense 
that both killer whales and great white sharks are large carnivores of 
the sea? If the former were the proper classification, then we would 
like to have a single theory which could explain both wars. If the 
latter is the case, we would accept the similarities as being 
relatively unimportant from a scientific point of view. 
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World War I started suddenly and ended suddenly, while World War 
II came on more smoothly and ended more smoothly. Perhaps even more 
interesting, historians who have looked for "causes" have emphasized 
the forces of nationalism (incompatible basic objectives), the arms 
race, and the tight system of alliances as leading to the outbreak of 
World War I. While they find nationalism a "cause" of World War II, 
they also see the absence of a tight alliance system and the failure 
of Germany's opponents to rearm aggressively in the 1930's as other 
causes. If the opposite of what caused World War I caused World War 
II, is it a fruitful classification scheme that would lump them 
together and, thus, call for a single theory to explain them both? 

If one can describe two different phenomena in terms of the same 
mathematical structure, then we believe there is a high potential that 
a single theory can be developed to explain them both, even though 
obvious characteristics would suggest that they are very different. 
We attempted to describe the time paths of the relevant variables in 
the cases of the first and second World Wars in terms of the butterfly 
catastrophe. To the extent that we were successful, we believe we 
took a step towards building a deductively more powerful theory of 
war. 

SOME EXAMPLES FROM THE HISTORY OF SCIENCE ,    ■ 

The very fact that the description is done in terms of a 
mathematical system means that some significant generalizing has been 
undertaken. Indeed, the description becomes an empirical 
generalization. There are a number of simple examples of this from 
the history of science. Mendel described the offspring of two 
different purebred parents as occuring in the ratio of 1:1:2 (one like 
one parent, one like the other parent, and two hybrids). The actual 
number of smooth, wrinkled, and mixed peas he counted approached these 
ratios but were different. He generalized his findings to produce his 
law which is really a description of his findings in generalized form. 
It is that generalized description of the pattern that became the 
meaningful puzzle--it is the phenomena to be explained. The early 
theory of genes provides the explanation of the Mendel ratios. It is 
the theory of a mechanism at a more micro level that can generate the 
phenomena as mathematically described. 

The descriptions of observed phenomena in terras of some 
mathematical structure is one way of generalizing. In the example 
used it also leads immediately to point predictions. But this latter 
is not the crucial point I wish to make here. Getting the 
mathematical structures right is, at the early stages, as important as 
getting the numbers right. Let me discuss another classic example to 
illustrate this point. 

One of the most fruitful generalizations in the history of 
science was Kepler's portrayal of the orbit of the planet Mars as an 
ellipse. His establishment of the orbit as an ellipse, rather than as 
a circle, not only provided a generalization which accounted for all 
of the observations of the discrete points at which Mars had been 
observed from Earth, but it also provided the conceptual basis for 
explaining the  structure of the solar system by locating the sun  at 
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one focal point of the orbit of each planet, and demanded a physical 
theory to account for the variable orbital radii of the planets. 
Kepler's achievement (which essentially laid the foundations for 
lodern astronomy) has been termed the "finest retroduction ever 
made .... perhaps the most significant systematic hypothesis yet 
conceived" (Hanson, 1958, p.73). Beginning with accurate data on the 
positions of the planets, Kepler struggled for a period of over five 
years to discover a mathematical structure which would account for 
these observations. 

Before suggesting how he arrived at his final generalization, let 
us speculate how many modern social scientists would have proceeded in 
the same situation. The typical social scientist would have connected 
the points with a smooth line and if mathematically inclined, written 
a polynominal which would have approximated such a curve. He probably 
would have hypothesized that the orbit of the planet was a circle, 
since the path of the orbit deviated only by 858 parts in 100,000 from 
being a perfect circle (Hanson, 1958). Proudly he would have 
proclaimed that he could account for over 99?o of the variation in the 
orbit of the planet Mars and thus had established that it was a 
circle.  But, he would have been wrong. 

Kepler himself struggled with the circular conceptualization for 
several years before arriving at the ellipse as the proper curve. It 
is important to recognize that he was not simply motivated by a desire 
for greater precision but, instead, by a desire to specify the 
mathematical structure involved. Of course, we do not know Kepler's 
psychology or personal philosophical motivations for investigating, 
and finally accepting, the ellipse as the geometric description of 
planetary motion. However, it seems reasonable to suppose that the 
traditional mathematical studies of conic sections, as well as the 
special physical and geometric properties of the ellipse, must have 
guided Kepler's intellectual interest and his aesthetic judgment. In 
other words, pure mathematical research gave an impetus to this 
astronomical application in a manner that could not be predicted or 
defended by deductive logic alone. 

Kepler was not engaged in induction. The shift from circle to 
ellipse entailed a momentous conceptual leap--from an orbit centered 
on a single focus (e.g., circles or ovids) to one centered on two 
foci; from a Greek perfect static form to a dynamical interchange of 
forces. Once the ellipse was recognized, it was a relatively simple 
task to go on to demonstrate that the orbit of every planet is 
elliptical with the sun as one of the two foci--thus specifying the 
geometric structure of the entire planetary system. 

This example illustrates two critical points relevant to this 
discussion. First of all, as Hanson argues, it exposes the logic and 
the importance of inference by retroduction. Scientists do not search 
for deductive systems per se nor do they achieve fruitful results 
through induction by enumeration and approximation. The scientist is 
in search of explanations of data. "His goal is a conceptual pattern 
in terms of which his data will fit alongside better-known data" 
(Hanson, 1958, p.72). This is a process of inference by retroduction 
from observation to explanation. Typically, contemporary researchers 
in international relations do not proceed in this fashion. 
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The second point illustrated by Kepler's activity is the central 
import of achieving description and of establishing a classificatory 
schema as prior steps in the uncovering of mathematical structure to 
account for systematic behavior. Once the ellipse was presented as an 
astronomical reality, scientists could note the important fact that 
the ellipse is one of a class of curves defined by planar sections of 
a cone. The trajectory of a cannonball on earth is a parabola, 
another curve in the same class. The orbit of a comet is either an 
ellipse, a parabola, or a hyperbola, all curves in the same class. 
There is an important sense, then, in which comets, cannonballs, and 
planets, which appear to be very different phenomena, exhibit the same 
behavior. Newton was able to expand the law of inverse squares to 
account for all curves that are planar sections of a cone. His basic 
laws of gravitational dynamics which produce the trajectories of all 
three would have been more difficult to discover if earlier scientists 
had not developed generalizations that facilitated classification 
schemes for phenomena that were later shown to obey the same physical 
laws. Planets, comets, and cannonballs are governed by a single law; 
from the point of view of Newtonian mechanics they are in the same 
class. The differences in their individual behaviors can be accounted 
for by different initial conditions in the individual instances. 

The typical social scientist tends to neglect these principles. 
By concentrating upon approximation and accounting for variation 
without having first adequately determined if the phenomena under 
examination are, or can be, classified together, the development of 
theoretical explanations is impeded rather than facilitated. Part of 
this difficulty stems from the paucity of well-articulated 
mathematical structures that are appropriate for the classification 
and description of social phenomena, including international 
violence. We are suggesting that catastrophe theory models, while 
they do not themselves provide a theoretical dynamic, do provide a 
very useful classificatory structure in which to construct a theory, 
just as the geometry of conic sections provides models in terras of 
which orbits and trajectories can be classified. While astronomy 
involves extremely accurate observations of a dynamical system 
following a deterministic evolution, behavioral sciences deal with 
much less precise data having a different sort of causal basis. These 
epistomological diversities are reflected in our choice of 
classificatory geometric models as we turn from the quantitative 
elliptic curve of Kepler to the qualitative butterfly surface of 
catastrophe theory. But the principle of describing empirical 
phenomena in terms of a mathematical structure remains the same. 

THE POTENTIAL OF CATASTROPHE THEORY 

Let us recapitulate the argument thus far. In the social 
sciences, better measurement, sampling, and research design make it 
easier (not more dificult) to confirm theories. Thus, the better our 
theory-testing research technology, the less confidence we can have in 
our theories. The problem lies not with the research designs and 
techniques themselves but with the absence of deductive power in our 
theories. Descriptions as genralizations done in terms of some 
mathematical system or structure will aid in classification decisions. 
These generalized descriptions, in turn, become statements of 
significant phenomena to be explained.  But why catastrophe theory? 
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The first reason is because of the structural stability of the 
basic mathematical system. : 

The force of Thom's theory of catastrophes lies in a mathematical 
uniqueness theorem that holds that the elementary catastrophes are the 
only possible geometric configurations sufficiently robust 
("structurally stable" in mathematical terminology) to be maintained 
in a real-world situation and not to be destroyed by random noise 
disturbances. (The context of gradient-like systems is part of Thom's 
hypothesis. See the comments of Stewart regarding popular 
misconceptions of elementary catastrophe theory.) In other words, if 
any predictable regularity is observed in a process of the physical, 
biological, or social sciences, and this observable is subject to 
multi-model behavior, radical divergences in development upon slight 
modifications of causal history, and even discontinuous jumps of 
observed behavior, then such a scientific process is most likely 
describable in terms of one of the elementary catastrophe geometric 
models. Of course, any such mathematical limitation on physical 
reality must be itself based on philosophical and mathematical 
assumptions, such as dynamical continuity, structural stability, and 
further requirements of simplicity. 

To understand the significance of the structural stability of a 
mathematical system, it must be distinguished from the stability of an 
attractor. The mathematical system itself is stable if, when the 
system is perturbed, its qualitative properties remain invariant. The 
qualitative appearance of the parameterized phase portrait does not 
change as a result of an alteration in the parametrized functions. 

What is the significance of this structural stability of a 
mathematical system for empirical research? It means the small errors 
in setting up one's model and errors in measurement and sampling will 
not distort the major features of the portrayal of empirical reality. 
Because it may be very difficult to set up the model of change when 
the time constants are long and when there are likely to be severe 
measurement problems, sturctural stability is a valuable property. 

A second characteristic of catastrophe theory that we find 
attractive is its qualitative nature. While skeptical of many of the 
attempts at precise measurement in the study of war and long-term 
social change, we have much more confidence in qualitative 
comparisons. While hard pressed, for example, to come up with a 
precise measurement of the "tightness of the coalition structure" in 
the European state system in 1910 and in 1936, we are confident that 
it was tighter in 1910 than in 1936. We also have more confidence in 
answering the direction of change in some variable over long time 
periods than in specific measures at some point in time. 

The ability to work with qualitative data in a structurally 
stable mathematical system allows us to be reasonably confident of our 
descriptions of reality. One should not, however, take this to mean 
that the descriptions are easy--that any findings can be fit into the 
model. In our study of World Wars I and II, for example, we described 
the time paths of five variables. Very few time paths would have 
conformed  to the mathematical requirements  of  catastrophe  theory. 
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Thus it would have been very easy to demonstrate that the butterfly 
catastrophe was an inappropriate mathematical structure for the 
description of the relevant phenomena. 

While we have emphasized the use of catastrophe theory as an aid 
to description and have never claimed that it "explains" the 
phenomenon being observed (any more than the geometry of conic 
sections "explains" the orbital paths of heavenly bodies), the 
mathematics constrains the description so tightly that one can make 
necessary "if-then" predictive statements. For example, if our 
description of World Wars I and II is valid, then our theory of the 
international system must hold that the most peaceful states occur 
when each nation has a comprehensive treaty with every other nation 
(world federalism?) and that the highest states of international 
violence occur when no nation has an alliance with any other nation 
(the war of all against all?). These may sound like trivial 
statements that are just common sense. It is encouraging, however, 
when common sense emerges as a necessary conclusion from complex 
mathematics. There are other less obvious necessary conclusions. For 
example, when the level of arms is low and the coalition structure 
loose, minor differences will lead to localized hostilities. If the 
coalition structure is tight, major wars break out over smaller 
differences when the arms level is low rather than high. 

These predictions are qualitative. They emerge from real world 
interpretations of regions within a topological space. They can best 
be interpreted comparatively. But the predictions do follow 
necessarily from the mathematics. Thus they have some of the 
desirable characteristics of the point predictions Meehl finds so 
valuable in the physical sciences.  They would be easy to disprove. 

We are making a limited but important claim for the application 
of catastrophe theory. We should be explicit in what we are not 
claiming. There is no substantive theory that is explicit. We have 
posited no dynamic. While we can use the theory to help characterize 
states of the international system, we have no dynamic by which states 
change. 

The next step in our work involves developing that dynamic. This 
will be first a theory (also qualitative) of how the control variables 
interact with one another. If that can be worked out we will move to 
the more micro level of nation behavior to demonstrate how nations' 
actions give rise to the dynamic in the control variable. This lies 
in the future but is part of the continuing quest to increase the 
deductive power of the social science theories. 

COMMENTARY 

There is substantial agreement between Holt and Stewart. In 
particular, both emphasize the need to choose an appropriate setting 
before collecting or attempting to interpret data.   A "bad" setting 
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can introduce artifactual quantities,  obscure actual phenomena,  and 
suggest fruitless lines of research. 

The selection of the "right" setting appears to be an art more 
than a science. It involves aesthetic and philosophical 
considerations. 

Holt considers direct approaches to the problem of improving 
social modeIs--improve the measurements and make the theories more 
deductive. He concludes that while both are desirable, neither looks 
feasible at this time and suggests trying something less ambitious but 
having some chance of success. 

The analogy of the killer whale and the shark is a vivid one and 
the author's experience of a genuine piece of modeling--World Wars I 
and II--adds  practical" experience to the general discussion. 

Particularly interesting is the discussion of Kepler's famous 
exercise in datafitting, the discovery of elliptical orbits. Holt 
does not emphasize that Kepler's work did not stem from any lack of 
accuracy of existing models. The Ptolemaic system of epicycles was 
extremely accurate; it could easily be used today with a few- 
corrections to adjust it to the prevailing state of the solar system. 
But the Ptolemaic system was cumbersome and complicated-- "chewing-gum 
and string". It began with a circular orbit, calculated the errors 
thus produced, corrected the errors by superimposing a second circular 
orbit centred on the first, and repeated this process indefinitely to 
obtain more and more accurate empirical predictions at the expense of 
introducing more and more epicycles (a total somewhere into the 
fifties). 

In passing, it might be remarked chat this approach is not unlike 
the statistical technique of accounting for as much variance as 
possible, then correcting for "residuals", and continuing this process 
until a good fit occurs. To what extent are today's statisticians 
playing the role of Ptolemy, and might there be a Kepler lurking in 
the wings? 

Kepler did not just want a good set of predictions or a good method 
for computing "the answers;" he wanted a satisfying aesthetic 
structure that would help him to understand the phenomena. 

Another interesting argument in Holt's paper is that the 
predictions made by a catastrophe-theoretic model are relatively 
"tight" and readily falsified if wrong. This is in direct conflict 
with a common criticism of catastrophe theory--because it is 
topological and hence highly flexible, it can be made to fit almost 
any set of data and hence (?) is "unscientific." The same argument 
would appear to apply to (e.g.) Fourier analysis, cubic splines, and 
the theory of differential equations; hence the query. A possible 
resolution of the argument might be this: Any specific catastrophe 
theory model is testable and "scientific," but catastrophe theory 
itself is not--it is a branch of mathematics. We may ask "does it 
have applications?" and we may ask of any single application "is this 
right?" but  it  is pointless to ask simply "is  catastrophe theory 
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right?" just as nobody would think of asking "is calculus right?" 
(expecting thereby to be able to judge every application of it 
simultaneously: Either all of them are correct or all of them are 
false). 
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THEOREMS ABOUT ADMINISTRATION AND/OR CATASTROPHES 

Donald E. Walker 

President Walker draws upon a lifetime of 
experience as an administrator to present, in the 
form of aphorisms, axioms, and case histories some 
of the regular features which appear to be present 
in the administration of complex institutions. 
According to Thom (1977), the stating of analogies 
or metaphors is the proper aim of catastrophe 
theory and Walker moves toward that goal in this 
paper. Walker begins by observing that "getting 
even" is likely to be an expensive process and 
often invites rather than avoids catastrophe. He 
emphasizes the need to maintain homeostatic 
equilibrium in order to avoid catastrophe even when 
the solutions seem direct and obvious. Finally, he 
illustrates the cyclical nature of innovative plans 
and begins to introduce a model to describe the 
intuition gained from his experiences. 

A.   "You can never get even with the world.   It takes 
too long and too many lawyers."  (Woody Allen) 

I suppose the model in the back of my head that makes this an 
important maxim of administration is the notion that campuses and 
similar organizations tend to be highly resistant to cusp catastrophes 
unless interfered with by outside forces or events. I suppose as a 
corollary to this I believe that, even when such organizations are 
traumatized by outside forces, they still respond best (and sometimes 
avoid catastrophes) if they are managed in such a way that everybody 
is involved and people have the right and responsibility to make some 
choices, however painful those decisions may be. There are self- 
correcting and self-regulating tendencies at work on most campuses. 
Universities are homeostatic, at least to a degree. To throw some 
additional light on the homeostatic hypothesis, I include a brief 
essay by Lewis Thomas from his book The Lives of a Cell. How do these 
pages fit? The chapter fits in kind of a negative way. I have found 
that cusp catastrophes or even more complicated catastrophes can 
indeed occur in the face of even mild outside threats, if the 
institution is badly managed at the moment when the crisis threatens. 
Also, a crisis can be created by administrators alone in the absence 
of significant outside threats. One of the "dark seeds" of 
mismanagement is the attempt to "get even." This impulse stems from 
the fact that the administrator sees him- or herself as morally 
superior to the people with whom he works, better informed, or less 
self-serving. The administrator proposes a plan of action which is 
resisted or subverted. Then the old ego comes into play and the game 
plan becomes to "get even" with those who resist the administrator on 
the ground that this will prevent  further mischief.  Wrong!   If 
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catastrophes are to be avoided and not to be created by- 
administrators, administrators need to respect the organizations they 
serve enough to change course and to simply absorb the slings and 
arrows. Resistance isn't personal and it's bad news when 
administrators decide to churn the unrighteous into rectitude. 

B.  Axiom:  "All of us are smarter than any of us." 

I believe that complicated organizations, particularly 
organizations such as universities with multiple constituencies 
(including government agencies) emphatically do not operate on a 
pyramidal model of leadership. The problem is that most campus 
leaders participate in a prevailing stereotype of the culture about 
how "normal" campuses should be organized. The model may derive from 
the examples of the family or the church. The stereotype is that the 
organization is hierarchical with a strong leader at the top who 
should make all of the critical decisions. This is not a realistic 
view. If organizations ever operated like this, or if there is a 
class of organizations that still does, they are not relevant to the 
way in which most of society's large public service institutions 
presently operate. The leader may play a crucial role in the 
decisions of the organization and may even serve symbolically as the 
embodiment of the organization's ideals. The process is really much 
more broadly interpersonal, however, than traditional models allow us 
to perceive. Example: A university is faced with a significant 
budget cut. The information comes to the university late in the 
spring. The rationale for the cut is a shortfall in revenue for the 
state but also an anticipated decline in enrollment for the 
institution. What to do? There are a number of decisions which must 
be made--proposals come forward from campus constituencies, some of 
them realistic and some of them not.  For example: 

1. The faculty proposes, initially, in hurried consultations with 
relevant peer groups, that the budget deficit be met by cutting back 
on equipment budgets, telephones, supplies, travel and, if personnel 
dismissals are necessary, that they come from part-time employees and 
from the administrative cadre. The administration sees this as partly 
reasonable and partly not. Certainly supplies, equipment, telephone, 
and travel must be cut. Some part-timers must be let go, but 
administrative cuts, primarily through attrition, have been taking 
place for some time and people in administrative offices are already 
howling about working conditions and the need for additional help. 
The cut into the administrative ranks will be as explosive in the 
administration building as cuts in full-time faculty would be in 
"faculty land." 

2. The suggestion comes forward from some of the less initiated 
in the academic community and from the members of the institution's 
trustees that the president and the development office should launch a 
huge campaign for support from private industry, alums, and other 
groups in order to raise a "war chest" of several million dollars to 
prevent any cutbacks in the institution. The faculty are very 
enthusiastic about this idea and release statements to the paper 
heralding the "leadership" of the board of trustees in a time of 
crisis.  The administration is wary and unconvinced.  After all, it is 
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now late in the spring. Critical decisions must be made about 
personnel soon. Lawsuits may already be inevitable because of AAUP 
guidelines for notification of non-reappointraent and, in unionized 
sectors of the campus, union deadlines have already been passed and 
can be transgressed only after a declaration of financial emergency. 
To wait until the middle of summer to see if a fund raising campaign 
will be successful doesn't seem to administrators to be the jazziest 
idea in town. After all, neighboring institutions have already 
launched fund raising appeals. The university's alumni association 
has conducted a fairly successful fund drive earlier in the year. The 
industries in the area seem to be only moderately supportive of the 
university and then primarily in technical areas. 

3. The university administration feels that because of the size 
of the deficit the only possibility for realistically meeting the 
crisis is to send letters of non-reappointment to three-quarters of 
the part-time faculty. (Some part-timers are absolutely essential to 
teach laboratories and freshman sections.) They also believe that a 
freeze must be put on all hiring for the fall. Such action would mean 
aborting a fairly sizable number of "search and screen" processes 
already underway. Finally, they feel trustees should declare the 
institution to be in financial crisis and to issue letters of non- 
reappointment to a number of nontenured faculty members. 

4. There are two departments in the university that, in the view 
of the president, seem "expendable". They could be closed without 
damaging the main thrust of the mission of the institution. One is 
the department of geology and the other is the department of 
education. The department of geology has been steadily losing 
enrollment. It has at best only a dozen majors remaining. The 
faculty has been reduced to a half dozen people. The average age of 
the department faculty is sixty-two and would be higher had not the 
department been given a position four years before to hire a petroleum 
geologist--a man now tenured and in his early forties. 

The reasoning of the president is that the geology of the area 
has never been exciting and that it has already been well mapped and 
explored. Geology students receive insufficient field experience to 
fully qualify them as consulting or research professionals in the 
field. Students have been encouraged to do summer work in Colorado 
and other "interesting" geological states but the program has met with 
indifferent success. The human costs of closing the department would 
be relatively low. Practically all of the professors involved would 
have livable incomes were they to retire. Majors could be recounseled 
into other areas. The younger man could be kept on for two or three 
years to permit students enrolled in the major who chose to stay to at 
least complete a minor. The presence of one remaining member of the 
staff might also mitigate the possibility of losing costly lawsuits to 
students enrolled under catalogues with a geology major listed. 

The education department is more of a problem. It is divided. 
It has a good tournament-level research cadre consisting of five or 
six people. They might be transferred into other departments or even 
placed in an office of institutional research which the institution 
needs.  Most of the work of the department is, after all, the training 
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of elementary and secondary school teachers for whom there are few 
employment opportunities. The problem is further complicated by the 
fact that, in spite of the slender job market, a great many students 
still wish to earn a teaching credential. There would be contract and 
legal obstacles to closing the department. The university would win 
most cases under the financial exigency clause but some of the 
teachers could successfully argue that they could and should have been 
absorbed in other departments. Even assuming that half of these 
people were to win their cases, the savings to a university would be 
considerable. There would be fussing from departments that were 
required to absorb transfers since, regardless of the qualifications 
of the individual, transfer is never a popular solution to budget 
problems on campuses. Besides, some of the people who could argue 
competence in other fields, and therfore be retained, would not be 
considered the strongest members of the department. 

5. I should have mentioned that the first scenario would be that 
the president is instructed immediately by the trustees and by faculty 
groups to go to the legislature and the governor and howl bloody 
murder. I am assuming this strategy has been ineffective and that the 
legislative leadership has assured the president and the trustees that 
no changes in budget will be made at this late point in the session 
unless, indeed, further cuts are required. Now what? The answer, in 
my view, is that a process of "workup" has to take place. Whatever 
solution or combination of solutions is finally settled on will be the 
result of involving the multiple constituencies of the campus in 
dialogues and even confrontations with each other in order that best- 
fit solutions may be developed. It's a political process. It's a 
negotiating process. Forgive the pun, it's a process process. For 
the president to arrive at a solution before a considerable workup in 
which the shamans from every tribe put on the buffalo horns, pick up 
the gourds and dance around the patient will be simply a waste of time 
and will place the institution in danger of a catastrophe in which the 
president will be seen as the major problem. 

The process will need to be initiated and fostered by the 
president who must call meetings and offer his proposals for meeting 
the crisis. Often the only way that people decide in a stress 
situation what they really want is by a process of elimination by 
deciding first what they do not want--what is intolerable. This is a 
legitimate and a proper way to arrive at decisions. If pyramidal 
models of administration are cherished, however, this appears weak, 
vacillating, and as an attempt to avoid responsibility by getting 
others involved in the confusion. Pressures will come from every 
direction for the president or other administrators to be "strong," to 
exercise "leadership." What is meant by these demands is that 
partisan groups seek someone in a leadership position who will pursue 
their pet objectives ruthlessly. It simply isn't possible without 
creating a catastrophe. The president and other administrators must 
be perceptive enough to sense when consent (not approval) exists in 
sufficient degree to declare a portion of the puzzle to be in place 
and to announce the decisions that have been reached. Even when the 
solution is obvious from the start because there are no others that 
are reasonable, the process must still be transacted. We are 
accomplices  to  one  another  in  complex  institutions.   There  are 

50 



appropriate timings in the metabolism of complex institutions like 
universities which are highly relevant to decision making and to the 
induction or prevention of "catastrophes" in stressed times. After a 
certain amount of maneuvering, there's a point at which permission is 
given for decisions to take place, even painful decisions. The cues 
are subtle and when administrators discuss them they use the word 
"intuition" or "instinct" more often than is usual in either academic 
or administrative discussions. It's almost as though there were a 
biological metabolism at work. 

The Life Cycle of Innovative Plans 

It occurs to me that the natural cycle of innovative plans on a 
campus may have some relevance to catastrophe theory. I've noticed 
that innovations are very difficult to arrange in bureaucratic 
structures when the innovative idea comes from the top. There is a 
prevalent tendency for those in the affected department to say, "Fine, 
you have a good idea. Give us the money and we will work it out 
through our normal departmental procedures." The problem is that 
somehow things never quite get worked out. The extra money, if it 
comes, is absorbed to make those already in place and functioning in 
traditional ways more comfortable. If the suggestion for innovation 
comes from the department to the dean and president, the answer is, 
"Thank you for the splendid suggestion. We will consider it in the 
light of other university priorities," and again nothing happens. 
Usually, innovation actually occurs in universities because some one 
person, or occasionally two or three people, catch on fire about an 
idea and simply will not put it down. They push and test the existing 
structure to its limits, often arranging end runs that are annoying to 
those above them in the hierarchy. Basically, they subsidize the new 
scheme out of their'own perspiration and overtime. Having succeeded 
in attracting acceptance from "the establishment" within the 
organization, but still sailing under the colors of "innovative 
verve," they then apply successfully for subsidization. Once they are 
included in the formal budget structure of the organization, the 
innovations of the program begin to cost more and more or less and 
less. Again, the normal tendency in organizations is to spend new 
monies to make existing programs more comfortable rather than to 
expand and to continue to innovate. 

Let me offer an example: A campus with which I am familiar had 
as a member of its faculty a very bright artist (painter). This 
artist was also interested in folk music. The idea occurred, as a 
result of acquaintances made and experiences he had had on a 
sabbatical in England, that a gathering of folk musicians might be a 
successful event at his university in the states. He talked to key 
people in the university about an allotment of money for such an event 
but was discouraged. After all, state monies really could not be 
expended to subsidize a folk music festival. He decided to go ahead 
on his own. With the help of like-minded students and some friends 
on the faculty, he advertised a gathering for the following fall. He 
wrote to folk musicians he had met on his sabbatical year abroad and 
asked if there was any possibility of their stopping by, free of 
charge,  of course, to perform^ during what he hoped would be a stellar 
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week where good friends and musicians simply shared fellowship and 
music with one another and treated each other to the mutual gift of 
talent. The organizing professor indicated that although there would 
be no recompense either for travel or performance, he and his friends 
would be able to offer housing and meals in their own homes for their 
guests during the period of their visit. A few responded favorably. 
Attracted by "name" performers from other countries, folk musicians 
from nearby communities also attended at their own expense. The event 
provided an emotional "high" for those who were present. It was 
stipulated by all to have been a highly successful gathering which 
should be repeated. It had the fresh ego-enhancing smell of a new 
automobile about it. The festival was repeated for four or five years 
with the gatherings being somewhat larger each year. In the meantime, 
the administration had bent a little and had offered first, postage 
for mailings, next, a little help with typing, in another year, some 
assistance with phone bills which were becoming larger, and much more 
active help in arranging space for the performers and in publicizing 
the event. By this time, the event was drawing favorable attention 
from all over the nation, at least among folk music illuminati. The 
university began to take pride in the yearly festival as though it had 
been officially and centrally sponsored and arranged. The president 
began to mention it in his community and national talks. The founder 
of the event meanwhile became increasingly restless. He complained, 
and legitimately, about the tax the event placed on his time and his 
energy. He wasn't certain that he could continue unless he received 
some help. He asked nothing for himself but thought that a paid half- 
time assistant to handle more of the detail would be very useful. The 
half-time assistant was arranged. Within a year or so, the half-time 
assistant had become full time. A part-time secretary was given to 
the program. The director himself finally declared that although it 
would be unfair to ask to be recompensed for all the time he spent 
throughout the year on the program, nevertheless, some additional 
stipend or reward for the period of most active work would be fair and 
even essential if the program were to continue. In the meantime, the 
practice had developed of arranging and paying for commercial housing 
for some of the visiting folk musicians. There was more talk about 
the need for travel money and other support for the program. All of 
these legitimate requests were honored. Finally, the ultimatum 
arrived that not only was the program in the fall necessary, but 
several events of a similar character in other fields of music were 
essential to complete the weave of the colorful tapestry that had been 
such an ornament to the university. A full-time office must be 
established to run the festival or else the director had better things 
to do with his time. In this particular instance the program could 
have gone either way. Had it been included as a part of the 
university activities under university sponsorship and full funding, 
it would have then been in place and the cycle would have been 
completed. I should add that for the last two or three years of the 
program neither the number of participants nor the audience had 
expanded greatly. The program had become increasingly better known 
and costs had increased but service had declined. 

This scenario is, it seems to me, characteristic of the life 
cycle of such programs. To complete the description of the scenario 
at the university with which I am familiar,   the demand for expansion 
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and full subsidization occurred in a bad budget year. The director 
was told that regretfully the university could not expand its 
commitment and, indeed, might have to cut back some. The director 
with equal regret indicated that the event should be dropped. Nothing 
happened for two or three months. Then another individual came to the 
administration, indicated that she thought the program should and 
could be rescued by contracting commitments and events, by a return to 
the principle of calling on volunteers, by limiting the celebration to 
a weekend in the fall as in the beginning, and by relying on faculty 
families to supply housing to visiting musical groups. Modest postage 
and telephone subsidization and a small financial stipend for the new 
organizer were all that was required. The cycle began again. The 
next year the new organizer felt that more time was required and a 
partial salary was agreed to. The last I heard, the new organizer had 
applied for a part-time assistant. 

The relevance to the catastrophe theory may be that in innovative 
enterprises, on a campus at least, the enterprise is healthiest and 
most vigorous and most useful when it is subsidized out of overtime 
and enthusiasm of faculty and staff. As more and more of the 
operation is subsidized, services are reduced and costs go up. It may 
be that catastrophes occur in organizations at stages roughly 
comparable to the life cycle of biological "organisms." The biological 
metaphor has been used and overused before but it does seem 
suggestive. 

COMMENTARY 

Walker's remarks bring out some points from the practical side 
of administration. First, he shows that the actual administrative 
process is much more complicated, in fine detail, than any model could 
be. (In fact, if such a model could be constructed, it would be far 
too complicated to be useful.) So the aim of a model should be to 
provide insight into the coarse structure and to set up some signposts 
and useful metaphors that can be borne in mind when making decisions. 
(The metaphor is one of our most useful and traditional ways of 
transferring knowledge gained through experience; the metaphor 
provides a mental setting in which a phenomenon can be "experienced" 
cerebrally rather than physically.) Thus a catastrophe (or other) 
model would give a broad framework. After setting that up, a finer 
structure may be introduced. 

Another point brought out by Walker is that catastrophe really 
does mean catastrophe after all! He feels that abrupt changes are an 
undesirable property of leadership, that gradual change through 
maintenance of homeostasis is a desirable property. Even though the 
outcomes might be the same, it is preferable to achieve the outcome 
through continuous change rather than abrupt change ("carastrophic 
jump"). Given the "maintenance of homeostatis" as a possible 
minimization principle and the potential for abrupt change, a 
catastrophe model would seem a natural beginning point. Understanding 
such a model might help to generalize some of these properties of 
"good" and "bad" leadership. 
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Walker's last section describes a cyclical dynamic process which 
might be used as a starting point for a genuinely dynamic (non- 
equilibrium) model. 
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CATASTROPHE THEORY AND STATISTICS IN THE SOCIAL SCIENCES 

I. R. Savage 
:   - 

This article concerns the application of 
current statistical methods to catastrophe models 
and the new methods that might be required--in 
particular, methods for estimating the structure of 
a dynamical system. The question of 
equilibrium/disequilibrium is raised. 

At present, it is not easy to detect 
multivaluedness in a set of data and new techniques 
might be required here. Some specific suggestions 
are made. 

Finally there is a brief survey and commentary 
on existing work relating statistics to catastrophe 
theory. 

The usual way to develop new methods and theory in statistics is 
to fill a need from empirical research. Thus one presumes that as 
empirical applications of catastrophe theory appear when existing 
statistical knowledge is not adequately supportive of that research 
then new statistical ideas will be developed. It is a bit speculative 
to guess at what will be required before much work has appeared. With 
these thoughts in mind I will make brief comments on where statistics 
is, some directions of development which might be required to 
implement catastrophe theory, and the impact catastrophe theory has 
had on statistics. 

Where Statistics Is 

Statistical methods are highly developed for discrete and 
continuous, and for univariare and multivariate models when the errqrs 
are independent or have a simple pattern of dependence (as in survey 
sampling). New techniques and theory continue to be developed--ridge 
regression, optimum designs, Bayes procedures, etc. There is a 
gigantic body of material in this area developed in the last 100 
years. 

There is a growing and pressing need for statistical procedures 
to be applied when the observations have relatively complicated 
patterns of dependencies. Discrete time, continuous, univariate, and 
multivariate time-series theory is highly developed and is an active 
area of research. This is a central part of engineering and 
economics. Other areas, such as continuous time, discrete Markov 
processes are being actively developed as a response to needs of 
sociology. A great variety of techniques have been developed to 
explore response surfaces,  such as optimal design or bio-assay. 
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New Statistics for Catastrophe Theory 

Thinking of catastrophe theory as the analysis of the steady 
states of a dynamic system, it is necessary to be able to give a 
statistical analysis of the entire system. Although the steady states 
are the focus of catastrophe theory it should be realized that in the 
social sciences attention will linger on the dynamics since steady 
states are seldom approached when the obvious examples of social 
institutions (such as business organizations, professions, families, 
etc.) are considered. 

If the dynamic system is deterministic, with superimposed 
measurement errors, then the resulting statistical analysis would 
stand a good chance of being routine or easily obtained from currently 
available techniques. If the dynamic system is stochastic, possibly 
with measurement errors, then there is less chance that existing 
techniques will be helpful with the statistical analysis. It is not 
possible to guess which stochastic models will play an important role 
in the emerging need to use stochastic processes in social science 
research. At the moment the research effort is to develop the 
statistical properties of relatively simple and often used processes, 
such as time series and special classes of Markov processes. This 
effort is not likely to change course without compelling reasons. 

For many dynamic systems the steady state is quickly approximated 
in terms of the times required to make observations. For social 
systems rhe time to reach stability might be considerable although 
good approximations might occur quickly, as in the theory of stable 
populations. So if we wish to study social systems with either a 
stochastic drive or measurement error then we need analytic and 
statistical techniques to see if the system is approximately in a 
steady state or to measure the response time for the system to reach 
a steady state after it has been shocked out of a steady state. These 
topics need to be covered in applications but it is doubtful that 
basic new statistic topics would arise. The possible things that 
might occur are so numerous as to make it impossible to do the 
statistical research before people have thought of the kinds of 
empirical problems they wish to explore. 

With systems having slow response times, the most direct approach 
to catastrophe theory is to observe and model the dynamic system. 
When the structure of the system has been well estimated we can also 
estimate the steady states and catastrophes. One can then observe 
steady state behavior, consequences of shocks, moves along paths in 
the control states, etc. That is, we can check the predictions of the 
model. In rapidly moving systems one can not estimate the model by 
directly observing the dynamic system. Then one might be forced to 
focus on the steady states. 

So now let us consider what, if anything, can be learned from the 
steady states. In the social sciences this is likely to be a strategy 
of second choice since the dynamic process can often be directly 
observed and steady may not be obtained. 
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The analysis of the steady state surface without reference to the 
dynamic system imposes several requirements. First of all one must be 
sure they are on the steady state surface. One must develop 
observational plans that allow one to check that the control variables 
have been fixed long enough to make sure the system has come to rest. 
Different techniques would be required depending on which variables, 
control and response, can be observed repeatedly. (There may be 
situations where it is not possible to fix control variables long 
enough to have the system settle down.) At this time it is doubtful 
that any new statistical techniques will be required. 

Just thinking of cusp catastrophes, very little can be learned 
from single observations of each realization of the system. If the 
scatter plot of the response surface appears in part to be 
multivalued, that is slightly suggestive of a cusp catastrophe. The 
'slight" stems from several considerations. 

Although current graphic techniques are very good in examining 
data in three-space, it is not clear that visual clues would be 
adequate in most situations with the social data to make a strong 
argument for or against a multivalued response surface. This class of 
problems might require new statistical techiques. Also, if 
multivalued response surfaces were suspected there are alternatives to 
catastrophes. In particular, many scientists and statisticians might 
search for additional control variables in order to obtain a nicer 
surface. This traditional approach would be appealing in those 
situations where the dynamics have not been e.xplored and a detailed 
modeling effort has .not been made. 

A more fruitful situation occurs when several observations can 
be made on the same system in steady states under different values of 
the control variables. (We have in mind here the possibility of 
moving an individual through a sequence of steady states.) These 
multiple observations begin to allow us to search out the existence of 
cusp catastrophes. It must be remembered at all times that we need 
assurance of making the observations in steady states. Further, there 
is likely to be substantial noise in the data so catastrophe surfaces 
are not going to reveal themselves in a crisp manner. If data can be 
obtained in this form there are a host of statistical techniques that 
need development. 

(A) How to design sequential and nonsequential experiments to 
locate and measure a catastrophe. 

(B) Repeat (A) with observational data. 
(C) Define operationally what is a discontinuity. Then give 

statistical techniques to locate and measure the sizes of 
discontinuities. 

(D) Repeat (C) for the other "qualitative" features introduced 
by catastrophe theory. 

Treatment of these topics is not out of range of statistical 
theory. The lack of technique appears more as a lack of demand than 
lack of ability. The bottleneck in applying catastrophe theory to 
social science material is to find appropriate situations where 
adequate data could be obtained. 
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Impact of Catastrophe Theory on Statistics 

The work of J. Q. Smith (1979) employs catastrophe theory to 
solve problems in statistical theory and the work of Cobb (1978, 
1980b, 1980c) creates new topics in statistical theory. These are the 
major if not the sole authors.  I will cite a few examples. 

Smith considers the problem of finding the Bayes strategy when 
the posterior risk has several minima. He motivates the problem and 
further motivation is given by B. Spencer. Catastrophe theory as used 
here helps to organize a moderately messy problem in differential 
calculus. In the same spirit Smith has studied qualitative properties 
of families of density functions when the underlying variable is 
subject to a monotone transformation. 

Cobb has opened a new area in catastrophe theory by replacing the 
deterministic differential equations of the dynamic system by 
stochastic differential equations; he perhaps has only scratched the 
surface. Cobb's theory replaces the steady states by the density 
function of the steady states. The study of the qualitative 
properties--raultimodality as a function of the control parameters-- 
becomes the catastrophe theory. 

Smith s work is generated by existing problems so that it might 
find immediate use. On the other hand, Cobb is more speculative and 
more time will be required to assess its usefulness. 

COMMENTARY 

At the present time, a gulf exists between current statistics and 
applied catastrophe theory. No doubt this gulf will be filled in time 
after enough data sets are collected which exhibit catastrophe-like 
properties when viewed naively and after enough statisticians are 
attracted to help understand such data sets. There will be little 
interest among statisticians to study hypothetical situations and 
there may be little interest among mathematicians to collect large 
data sets without prior guidance from statistics, but there is no 
reason to think social scientists won't collect data without 
predetermined analytical guidelines--that's never held them back 
before. It will take time for these natural forces of curiosity to 
work, but the gulf will surely be filled, or judged irrelevant, in 
time. 

It would certainly be very nice to be able to estimate an entire 
dynamical system. But, as Stewart remarks, this is probably too 
much to ask at this stage. It is reasonable to concentrate on the 
first few steps. 

Equilibrium is a sufficient condition for a catastrophe model, but 
not a necessary one. In particular there is no requirement that the 
control variables be in equilibrium; only that the state is responding 
fast enough for a quasi-static approximation to be valid. One 
attractive area for catastrophe-theoretic attack is the possibility of 
simplifying certain types of dynamical system into a fast flow towards 



quasi-equilibrium and a slow dynamic on control space. There is a 
paper by Vasilis Angelis (1980) dealing with population changes in 
towns which uses this modeling technique to simplify the problem. The 
analysis of the observed data is made much simpler after the 
decomposition into fast and slow variables has been made. 

Smith's work has direct relevance to decision-making. Cobb has 
found the beginnings of a very nice mathematical generalization of 
important results in stochastic differential equations. While Cobb's 
own results are aimed at fairly practical aspects of the problem 
(least-squares estimation, etc.) and thus require practical testing 
before their value can be judged, the study of singularities, 
bifurcations, and catastrophes in parametrized stochastic differential 
equations should be an interesting and rich area of mathematics. The 
relations between singularity/catastrophe theory and stochastic 
differential equations appear to be a fruitful source of research. 

It has often been asked,  and it is certainly a natural question, 
what is the distinction between, or advantage one over the other of, a 
cusp"  model and a "merging-normals" model in dealing with situations 

where unimodal distributions may become bimodal?  We remark on  this 
question, based on work of Ian Stewart (1983), at this time. 

Consider the two parametrized families of distributions 

F ̂ ^(x) = F^exp(-x'*/U +  a(x^/2) + bx) and 

G,(x) = G^(exp[-(x-\)^] + exp[-(x+X)^]), X 0 

where FQGQ are normalizing constants (parameter dependent).   We refer 

to F as the "cusp" model and G as the "merging-normals" model for the 
rest of this discussion. Note that F is Cobb's canonical cusp 
distribution; G is certainly close to what people have in mind when 
they speak of "merging normal distributions". The parameters a,b are 
the "bifurcation (splitting) factor" and the "weight (normal) factor," 
respectively.  The parameter \ is a "merge" factor. 

The model G represents two superimposed normal distributions 
whose modes merge and separate along the lines x = + \ (as X passes 
through  X  =0).   One might guess rhat G is thus bimodal for X ?  0, 
with modes merging 
interesting happens. 
appear as 

and  separating  at  X  =  0.    Something more 
Stewart shows that the modes and antimodes of G 

X 

mode 
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That is,  G is .bimodal for X < - ^jl,   becomes unimodal for -1/2/2 < X 

< \/2/2,  and goes bimodal again for >/T/2 < \.   Note the similarity 
between this picture and a "two-ended pitchfork!" 

In the absence of outside symmetry constraints, a bimodal 
distribution cannot maintain symmetry between its two modes. 
Therefore, G is a structurally unstable model. Consider the 
introduction of another parameter A, "weighting," that allows the two 
modes to differ in size: 

G^^^(x) = Gg(exp[-(x-X)^] 4- A exp[-(x+X)^]) 

Stewart  shows,   for  fixed A r 1,  the larger mode  assimilates  the 
smaller  one at some value X = •X,,  G remains unimodal for ■X, < X < 

A -  - 
X , and then reforms a smaller mode on the other side for X. < X.  The 
A A 

modes of G,   appear for A fixed, A > 1, as 

\ 

and for A fixed, A < 1, as 

-\ 

All other perturbations of the double pitchfork are realized when X,A 
are  moved  through X = 0,  A = 1 along various paths.   Graphing all 
modes and antiraodes of G,   in \,A,x-space gives the picture shown in 

Figure 1.  Thus G, ,(x) is a "double cusp." 
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Considering the  case X > 0 only,  the two models F   (x) and 
a, D 

G, .(x) are equivalent.   It seems that the major distinction might be 

in point of view:   G comes encumbered with the idea that  there are 
"two  superimposed populations," while F brings with it the  idea of 
"one population with two behavior patterns." Cobb's cusp seems to 
have the following advantages: 

(a) 

Cb) 

it  is  more easily derived from a  stochastic differential 
equation 

it  is  simpler  (one singularity instead of two, 
does not restrict X > 0) 

if one 

(c)  it  is more easily comparable with the cusp (one example  of 
structurally stable singularities). 

Figure 1, 
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TWO THOUSAND YEARS OF CATASTROPHES: 
PURE AND APPLIED MATHEMATICS 

L. Markus 

This paper demonstrates that catastrophe 
theory is part of a long and successful 
mathematical tradition of geometric methods in 
science by providing an often amusing description 
of the historical development. 

Emphasis is placed on the search for natural 
qualitiative forms as the basis of models, and the 
history is used to support this line of attack. 

Advantages of catastrophe theory include 
structural stability and genericity and it appears 
a good place to start in seeking to advance beyond 
the current linear or pseudolinear modeling 
techniques. 

Some mathematical and applications-oriented 
problems are described. 
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The Tradition. 

First of all I wish to pay tribute to the Great Geometer who 
launched the mathematical program that forms the basis of modern 
catastrophe theory. I refer, of course, to Apollonius of Perga (262- 
200 B.C.), who wrote his famous treatise On Conies at the Museum at 
Alexandria (Apollonius, 1952). 

In the current generation there has appeared another great 
geometer, Rene Thom (1972), who has reformulated and continued this 
mathematical tradition in his important research volume Stabilite 
structurelle et morphogenese, written at the Institut des Hautes 
Etudes Scientifiques at Paris. 

In this paper I intend to discuss the geometric researches of 
Apollonius, of Thom, and of some of the great geometers from the 
intervening two thousand years who developed the mathematical area 
that we now refer to as "catastrophe theory." In particular, I plan 
to indicate the development of the geometrical and scientific concepts 
with the accompanying theories of pure and applied mathematics and to 
comment on how these ideas have interacted with the methodology and 
philosophy of science over the past two millenia. 

In order to set the record straight, the central mathematical 
theory traced in this lecture is that of conic curves and their 
generalizations to quadric surfaces, and our theme is that catastrophe 
theory is the latest fillip (but a worthy fillip) in this millenia old 
tradition. 
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Helenistic Catastrophe Theory 

Euclid left Athens to found the School of Mathematics in the 
Museum of Alexandria and, a generation or so later, the most 
distinguished scientist on the staff was Apollonius of Perga. 
Apollonius (1952) established his mathematical fame (during the Middle 
Ages he was referred to by the title "The Great Geometer") by a 
research treatise On Conies in which he defined the ellipse, parabola, 
and hyperbola curves as conic sections, and demonstrated their 
properties that now are familiar topics in a standard college course. 

Ellipse Parabola Hyperbola 

The method of Apollonius was to cut or section a right circular 
cone by a plane and to obtain the ellipse, parabola, or hyperbola as 
the intersection of the plane with the conic surface. When the plane 
was horizontal--that is perpendicular to the axis of the cone--the 
section was a circle. When the plane was inclined, the section was an 
ellipse whose eccentricity was determined by the angle of inclination. 
As the inclination was increased, the family of ellipses could be 
parametrized by the corresponding eccentricities. For the very 
special inclination that brought the plane into parallel with a 
generator line of the cone, the family of ellipses terminated abruptly 
(a catastrophe) and the conic section was a parabola. For still 
steeper angles of inclination the resulting curves formed a family of 
hyperbolas. 

We are interested here in the tacit assumptions of philosophy and 
psychology in the approach of Apollonius rather than his technical 
mathematical results about conic sections. In particular, we shall 
comment on how these assumptions and the resulting mathematical 
discoveries fit into our modern concepts of catastrophes. 

First recall that the Greek philosophy of mathematics, pure and 
applied, held that straight lines and circles were the only natural 
curves  that had a  legitimate role  in science.   This view was 
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emphasized in Euclid's Elements (1952) where triangles, squares, 
polygons (formed from line segments), and circles are the only plane 
figures of significance. [Note that one of the famous Delian problems 
was to "square the circle."] ; 

Aristotlian mechanics (Aristotle, 1952) asserted that terrestrial 
bodies fell in straight lines towards the earth and celestial bodies 
moved in circular paths in the heavens. Later astronomical theories 
of Ptolemy (1952) required some modifications of this view to allow 
compound circular motions (epicycles) to explain the motions of the 
planets, but the epicycle configuration and the pre-occupation with 
the circular form was assumed inviolate through the work of Copernicus 
(1952) over a millenium later. [It is of interest to note that this 
pre-occupation with lines and circles still exists in Newton's first 
law or Einstein's law on geodesies and for the spherical expanding 
universe.  See Einstein, 1923.] 

From this viewpoint the mathematical significance of the research 
of Apollonius was that he brought the new curves, ellipse, parabola, 
and hyperbola into legitimacy by relating them directly to 
constructions involving lines and circles. [The inclined plane is 
generated by a moving line and the right circular cone is generated by 
a line joining the vertex to the circular section.] 

Moreover, besides becoming legitimate in a certain psychological 
sense, these conic curves become practical, workable objects that 
could be handled successfully by skillful mathematicians. In other 
words, the conic sections entered the mathematical repertory of 
natural and useful constructs that should always be kept in mind by 
future scientists. 

A similar claim could be made for Archimedes (1952), the 
contemporary of Apollonius, with regard to his treatise On Spirals. 
Thus when Kepler reached (mentally) for the ellipse to describe the 
orbit of Mars or when Cornu reached for the spiral to describe the 
diffraction of light, these constructs presented themselves as 
natural, practical possibilities. In fact, there is some evidence 
that spirals and their generalizations tend to become more important 
than conies whenever terrestrial dissipative dynamics displaces 
celestial conservative dynamics in mathematical research fashions. 
However, a catastrophe theory for families of spirals (that is, 
bifurcation theory for dissipative dynamical systems) is still in its 
infancy. 

I 

Another feature of Apollonius' approach to conic sections is more 
technically related to the concepts of catastrophe theory. Namely, a 
certain qualitative form (the ellipse) is maintained through a 
parametrized family of similar geometric objects, but at a special 
"catastrophe point" (the inclined plane parallel to the generator of 
the cone) the family of ellipses changes abruptly into a family of 
hyperbolas. The special "catastrophe section" defines a degenerate 
conic, a parabola in this example. Of course, the concept of 
"qualitative form" here refers to the "global figure" of the ellipse 
(or hyperbola), that is, the shape of the full ellipse, as a closed 
curve with certain special symmetries. This is not the same as the 
"local figure" that enters into the modern catastrophe theory of Thorn. 

! 
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But the central idea in both geometries concerns abrupt radical 
transformations of form, with emphasis on the structure of the 
transformation itself and, even more, abrupt or catastrophic 
transformations of conies. 

It is my view, expounded later in more detail, that the main 
consequence of Thom's catastrophe theory is to legitimize certain 
geometric forms, and to bring these new and interesting geometric 
configurations into the mathematical repertory of natural and useful 
constructs, and that also should be kept in mind by future scientists. 
What are Thom's elementary catastrophes? In what sense are they 
philosophically and psychologically natural? And how can they be 
interpreted as straight-forward generalizations of Apollonius' conic 
sections, in theory as well as in practice? These questions are the 
subject of this paper. 

Renaissance Catastrophe Theory 

During the 16th and early 17th century there were two brilliant 
applications of the methods of conic sections to the newly arising 
sciences of kinematics (by Kepler, 1952) and of dynamics (by Galileo, 
1952). The introduction of the ellipse into astronomy and the 
parabola into terrestrial ballistics were scientific discoveries of 
the highest order of creativity and profundity. Yet neither 
innovation would have been plausible, despite the detailed 
observational evidence, without the philosophical and psychological 
framework created by Apollonius and other classical geometers in their 
studies of conic sections. 

Kepler made the gigantic leap of the imagination to replace the 
circular complex of epicycles of Copernicus by elliptical orbits for 
the planets around the Sun. From the mathematical viewpoint, Kepler 
was much more of a revolutionary than was Copernicus. But Kepler 
still could not break totally from the circular tradition, and was 
able to accept the ellipse as a physical reality only because of its 
global geometry, its symmetry, and its close relation to the classical 
circular form (and, of course, because the choice of an ellipse for 
the orbit of Mars gave a very good fit to the observational data). As 
an instance of the strength of the Greek tradition, Kepler regularly 
computed the elliptical orbit using the inscribed and circumscribed 
circles as guides. 

Galileo's discovery of the parabola as the trajectory of a cannon 
ball was revolutionary in a different and more modern sense. Galileo 
was led to the parabola, not because of the global geometry, but 
because of its local or even infinitesimal geometry that describes the 
instantaneous acceleration of the cannon ball at each moment. In 
modern terminology, the parabolic trajectory is the solution of the 
Newtonian differential equations of motion, where the only significant 
force is the constant gravitation of the Earth. Thus Galileo led the 
philosophical revolution away from the worship of global symmetry to 
the slavery to infinitesimal analysis--the revolution from 
Aristotelian perfection to Newtonian determinism (although 
Aristotelian teleology seems to be making a comeback in the group 
theoretic methods of atomic physics). 
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Enlightenment Catastrophe Theory. 

Newton, through his discoveries of differential calculus and his 
techniques of power series, cast the laws of nature into the language 
of infinitesimal analysis. An arbitrary variable quantity as 
portrayed geometrically by a curve should be considered to be 
(approximately) a straight line or linear function in the 
infinitesimal neighborhood of each point. Further, relative to higher 
order infinitesimals, a curve should be regarded (locally) as a conic 
and a surface should approximate a quadric. In fact, Newton (1952) in 
his System of the World devised a theory of nature that emphasized 
second-order approximations, for instance, concepts such as 
acceleration and curvature. [Note: curvature is still central in 
Einstein's general relativity and the recent Yang-Mills field 
theories.] 

The new philosophy of the mathematization of natural law, through 
infinitesimal calculus, gave a new psychological acceptance to the 
importance of the role of conic curves and quadric surfaces in 
physical reality. According, an important task for mathematicians, 
both pure and applied, was to clarify and classify the geometrical 
properties of quadrics in two or more coordinates. This problem was 
resolved by L. Euler (1797) when he classified the real quadric 
surfaces into three types: ellipsoid, hyperboloid of 1-sheet, and 
hyperbolic of 2-sheets, with the transition or "catastrophe" quadrics 
designated as elliptic paraboloid and hyperbolic paraboloid (saddle 
surface). The method of Euler also gave immediately the geometric 
generalizations for higher dimensional quadrics, a topic now covered 
in undergraduate mathematics classes. 

But it was for J. Lagrange (1762) to demonstrate the power of 
this geometry of quadrics in applications by his method of "small 
vibrations," probably the most useful mathematical tool in the history 
of dynamics, and still the most widely-used method in current 
engineering design practice. Lagrange studied dynamical systems at 
and near equilibrium--that is, with stable or unstable small 
vibrations about the equilibrium state. By means of the mathematical 
approximations of linearization ("dropping higher order terms"), 
Lagrange found that a good model for all such small deviations from 
equilibrium could be postulated to be the movements of a particle 
under a gravitational force but constrained to slide on a quadric 
surface (or higher dimension quadric for dynamical systems with many 
degrees of freedom). For example, the small vibrations near a stable 
equilibrium are modeled by a particle sliding near the bottom of an 
ellipsoid, completely unstable motions correspond to deviations away 
from the top of the ellipsoid, and partially unstable motions to a 
saddle on a hyperbolic paraboloid. In technical terminology, the 
nature of the stability of the small vibration is determined by the 
eigenvalues of the linear approximation to the dynamical forces (or of 
the quadratic approximation for the potential function). 

Modern-Era Catastrophe Theory 

The dynamics of Newton, Euler, and Lagrange, through the methods 
of  infinitesimal  analysis,  brought the geometry of quadrics to  the 
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fore because quadrics naturally arise through the second-order 
approximations of general functions. In this sense the "naturalness" 
of quadrics was based on the choice of seemingly non-natural 
mathematical calculations of power-series alegebra. While this basis 
was certainly practical and workable, it lacked any strong 
philosophical and aesthetic appeal. During the century 1850-1950 
A.D., a new philosophical and psychological foundation for this usage 
of quadrics was provided via the concepts of "qualitative form," 
"structural stability," and "generic behavior." 

It was in his doctoral thesis that H. Poincare (1879) made 
precise the method of small vibrations that had been developed by 
Lagrange as an approximation method for dynamical systems near a 
stable equilibrium. Namely, Poincare showed that if the dynamical 
system is viewed or measured in suitably flexible coordinates then its 
behavior is exactly that of the linear approximation of Lagrange. 
Thus, up to "qualitative form" the nonlinear dynamical system is 
precisely linearizable near its stable equilibrium state. In more 
recent times the qualitative linearization theory of dynamical systems 
has been extended to include unstable systems with quite general 
behavior but always locally near an equilibrium state. 

Linear Nonlinear 

Poincare showed that, up to qualitative form, nonlinear 
vibrations are precisely the same as linear vibrations which Lagrange 
had treated as particles sliding on quadric surfaces. The achievement 
of Poincare in perfecting the small vibration dynamics of Lagrange was 
duplicated later by M. Morse (1934) in his theory of critical points 
of functions which he related to the geometry of conies and quadrics 
of Apollonius and Euler. That is, Morse considered general surfaces 
and graphs of differentiable functions in higher dimensions, and 
showed that near each critical point (where the function has zero 
gradient) the qualitative form of the function is exactly that of a 
quadric. While Newton and Euler had recognized that an arbitrary 
function near a critical point could be closely approximated by a 
quadric, Morse showed that the graph of the function was exactly a 
quadric, up to considerations of qualitative form. 

(Nondegenerate) Quadric Nondegenerate critical point 
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[Technical Remark:  By power series expansion methods near the origin 

X. = 0, f(x^,X2,...,x^) = (5f/6x.)QX^ + (5^f/5x.6x,)QX^x. + ..., 

where we assume f(0,0,...,0) = 0.   In case the origin is a  critical 
point,  (6f/5x.)  = 0 and the quadratic approximation to f(x) is given 1 u 

2 
by (6 f/5x.6x,)  x^.x^; and this is non-degenerate in case 

det 
1 P U  1 j 
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It is important to note how this modern concept of qualitative 
form differs from the corresponding concept as it appears implicitly 
in the geometry of conies propounded by Apollonius. For Poincare and 
Morse the geometry is local, that is, significant only in the 
neighborhood of some point, whereas for Apollonius, the global 
geometry of the conic-as-a-whole is the important feature. In other 
words, the local analysis is concerned only that a small part of a 
curve (a surface) resembles a small part of a conic (a quadric). 
Another distinction is that Poincare and Morse both allow general 
(diffeomorphic) nonlinear transformation or distortions in recognizing 
the qualitative form, whereas Apollonius allowed only linear 
transformation or scale changes in recognizing the common qualitative 
form for the family of ellipses. Thus the modern concept of 
qualitative form is broader, yet it is deficient in that it fails to 
capture even the most obvious or gross quantitative features. 

Even well into the twentieth century the motivation for this 
classification and local qualitative analysis still rested on the 
tradition of power series and a more general philosophical approach 
seemed desirable. This goal was achieved when L. Pontryagin (1937) 
provided a definition and criterion of structural stability. 

We indicate first the significance of the fundamental concept of 
"structural stability" for dynamical systems. Begin by classifying 
dynamical systems up to qualitative form (allowing nonlinear 
coordinate transformations) and think of formalizing the condition 
that such a qualitative form be maintained as a permanent feature 
under arbitrary exogeneous perturbations. That is, we seek to study 
qualitative forms that are stable in structure. Hence, a dynamical 
system is structurally stable in case it maintains its given 
qualitative form under all suitably small perturbations. For example, 
the linear oscillation x + x = 0 (all solutions periodic, with the 
constant period 27T) is not structurally stable since an arbitrarily 
small frictional force perturbs this dynamical system to a damped 
oscillator x + ex + x = 0 (small t) having no periodic orbits. On the 
other, hand the damped linear oscillator x + x + x = 0 can be shown to 
be structurally stable and hence represents a more practical model of 
engineering reality. ■, 
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While the concept of structural stability was first proposed for 
dynamical systems, the analogous property is easily understood for 
real functions, whose graphs may specify curves, surfaces, or higher 
dimensional manifolds in many variables. The two uses of the concept 
are closely related (although technically not identical) if we take 
the dynamical system along the gradient of the real function--that is, 
we consider the potential function for the dynamics. 

A real function f(x,,x„,...,x ) is called structurally stable  in 
1     Z n 

case  all perturbations,  to functions f(x ,x ,...,x ) + £(x ,...,x ) 

(for  all  suitably  small   £:(x, ,...x )),  still  maintain  the  same 
i    n 

qualitative  form  as  f(x ,...,x ).   Sometimes it  is  desirable  to 

localize this concept and to consider (in an obvious way) a function 
to be structurally stable in the locality of some point on its graph. 
It was immediately recognized that a differentiable function 
f(x ,...,x ) was automatically structurally stable near each non- 

critical point and also near each critical point that was non- 
degenerate (that is, with the qualitative form of a non-degenerate 
quadric). In fact, Morse's theory showed that a critical point of 
f(x ,...,x ) is structurally stable if and only if it is a non- 

degenerate  critical  point   [technically:   5f/6x = 0 and 

det 6~f/5x.5x. 
1  J 

^   0] 

The concept of structural stability thus provides a new approach 
to the classification of critical points for a real function. 
Moreover, the non-degenerate critical points--and hence, non- 
degenerate quadrics--now have a sound philosophical legitimization 
because they are precisely the geometric forms that maintain their 
qualitative form under all perturbations or exogeneous variations. 

Contemporary-Era Catastrophe Theory. 

Beyond the concepts of "qualitative form" and "structural 
stability," a further important idea "genericity" was introduced into 
geometry in a far-reaching and practical manner by Rene Thom (1956), 
in particular, Thorn's transversality lemma. These intertwining 
concepts also formed the core of the contemporary theory of dynamical 
systems as advanced by S. Smale (1967). 

A class of mathematical objects, for instance dynamical systems, 
real functions, or geometric surfaces, is called generic in case 
almost all of the possible objects of this type belong to the 
specified generic class. In other words, a generic class contains all 
the mathematical objects under consideration, excepting relatively 
few, very special pathological or artificial examples. So generic 
behavior means typical behavior, with the unnatural and atypical cases 
excluded. Of course, the precise description of the allowable class 
of mathematical objects and the definition of the atypical excluded 
objects is necessary for a rigorous mathematical theory, and this has 
been satisfactorily accomplished in most problems of interest, in 
particular for functions, or even function-families that depend on 
parameters. 
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For instance, among all real functions of one variable (with 
graphs that are smooth curves in the (x,y)-plane), those having only 
non-degenerate critical points (locally of the qualitative type of 
non-degenerate quadrics) form a generic class and the same conclusion 
holds for real functions of many variables. That is, functions with 
degenerate critical points are hereby declared to be atypical and thus 
excluded from the generic class. It is remarkable that this generic 
class of functions can also be characterized as those functions with 
the property of structural stability. 

The spectacular innovative idea of R. Thorn was that any generic 
transition between distinct quadrics (or between functions whose 
critical points are qualitative, like distinct quadrics) must 
necessarily involve higher order geometric forms that are not 
themselves quadrics. That is, if we seek an interpolation between two 
generic functions and if we demand that the interpolation family 
itself be generic, as a parametrized family of functions, then this 
family must involve some individual functions that are nongeneric 
(that is, functions rhat possess certain degenerate critical points). 

In Apollonius' theory of the catastrophes of conic sections, a 
family of ellipses changes abruptly to a family of hyperbolas via a 
catastrophe at the parabolic section. But the catastrophe theory of 
Thom shows that Apollonius' transition between these distinct conies 
is not generic and that any generic transition must involve certain 
higher curves that are not themselves conies, and, in particular, not 
parabolas. In this way, Thom brought certain new types of curves and 
surfaces into the realm of "natural" geometry and physical reality. 
These new geometrical forms are not quadrics but they arise as the 
natural interpolations between quadrics. Thorn named these new 
geometrical forms the elementary catastrophe models. Thus, from the 
modern viewpoint of "qualitative form, structural stability, and 
generic behavior," Thom showed that Apollonius had found the wrong 
interpolation between conies (and quadrics) and that the correct 
interpolation must pass outside the class of quadrics and must involve 
the new geometric forms classified and described as the elementary 
catastrophes. 

In accord with the modern viewpoint, Thom's theory of 
catastrophes was local in nature, that is, it treated a family of 
functions in the local neighborhood of the catastrophe with the region 
of space restricted near the changing critical point and the parameter 
for the functions of the family near the catastrophe value. But 
Thom's theory was recast in global form by E. C. Zeeman (Trotman &. 
Zeeman, 1974) to deal with real functions in the whole n-dimensional 
coordinate space and generic families of such global functions. Later 
L. Markus (1979) rephrased the work of Zeeman to give a global version 
of Thom's theory of catastrophes that was hinged on the concept of 
"structurally stable function families," rather than on generic 
function families. Markus verified that both approaches are logically 
equivalent and produce the same elementary catastrophe models in the 
transitions between the non-degenerate critical points of the 
functions of the family. 
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In summary, the Thom-Zeeman theory deals with real-valued 
functions f(x ,x ,...,x  ,a ,a ,...,a ) depending on n state variables 

(x.,...,x )  and  r parameters  (o,,...,a ).    These  r-parametrized 
In 1     r ^ 

function  families  are assumed smooth (differentiable) for  all  real 
values of X = (x,,...,x ) and a = (a.,...,a ).  For most values of 

1     n 1     r 
a  = <2 ,  the functions f(x,a) are generic,  that is,  have only non- 

degenerate critical points. But for certain catastrophe values a = a , 

the  function f(x,a ) will have degenerate critical points  (x  where 

6f/5x = 0, but det |5f/5x 5x | = 0). Moreover, for generic function 
families only certain kinds of degenerate critical points arise, and 
the transition through these degenerate critical points is given 
geometrically by the elementary catastrophe models. 

This construction can also be noted from the viewpoint of 
dynamics and applied mathematics. For instance, assume we observe 
some phenomenon with state or measured effect x (possibly with n- 
components,  so we write the state vector x = (x ,x^,...,x )) for each 

fixed  setting of the causal or control parameters a     =(a ,a ,...,a ) 

that describe the environment or general exogenous levels for the 
background  parameters.   The  state  x will usually be  found  to  be 

located at  some value  x   where some  "potential  function" 
f(x ,x ,...,x ,  a ,...,a ) (or merely f(x,a) for abbreviation) has  a 

local  minimum,  or at least a stationary or critical point where  the 

gradient 5f/5x (x ,a)(i=l,...,n) is zero. For instance, we could 
postulate a "fast or microdynamics system" satisfying the gradient law 

dx /dt = -5f/6x  , i=l,...,n , 

with equilibria states x where  5f/5x = 0. 

It is therefore of great interest to plot the loci x (a) 
describing the observed equilibrium states as they vary slowly when 
the control or environmental parameters a are modified in some 
possible  "slow or macrodynaraical system."  It is  precisely  such  a 

graph M  called  the critical manifold (see Figures 1 and 2)  of  x 

versus a that indicates the locus of all critical points of f(x,a) 
including the local minima (stable equilibria for the microdynamics), 
local maxima (unstable equilibria for the microdynamics), as well as 
other critical points including possible degenerate critical points 
that will be described in terms of the elementary catastrophes. 

The behavior of the observed state x (a) would show a tendency to 
adjust  rapidly  to the critical manifold M  and to stick on M  as  a 

varies.   At various catastrophe points of a = a (where M no  longer 

projects  onto x-space in a smooth 1-to-l manner),  the observed state 

X (a) is forced to jump discontinuously to another sheet or branch of 
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M-.   In physical terminology the state x jumps abruptly from one 

observational mode to another mode. 

These jump phenomena for multi-modal phenomena are observed in 
physical, biological, and behavioral systems and it seems paradoxical 
that such a sudden discontinuity can arise from a gradual continuous 
variation in the parameter a. However, in terms of the function 
family f(x,a) the jump phenomenon is not mysterious, but merely rests 
on the obvious geometrical fact that the number of bends in a curve 
(or critical points on the graph of a surface) can increase or 
decrease by an integral number,  even though the curve itself is being 
slowly modified in a continuous manner. 

I 

These geometric analyses of function families and the 
applications of these ideas will be pursued in the next sections of 
the paper. 

, I 

Today's Catastrophe Theory. 

Mathematics is eternal, according to Plato, and so today's 
catastrophe theory is merely the way we regard the geometrical 
elementary catastrophes today. Let us first describe a few of the 
seven elementary catastrophe models and then conclude this section 
with a formal statement of Thom's discovery in the language of Zeeman 
and Markus. 

1 
In Figure 1,  we show a transition between a curve displaying a 

minimum to a curve with no critical points (see Holt,  1977).   Then a 
replay of the  sequence with suitable  reversals  produces  a  curve 
displaying a maximum.   For this purpose we study the generic function 
family of curves  y = f(x,a) that depend on  a  single  real  state 
variable x and a real parameter a. 

The generic transition occurs when a local minimum meets a local 
maximum and these two critical points annihilate each other at the 
catastrophe to produce a curve with no critical points. [Note in 
Figure 1(a) the parameter a decreases leftwards, to show this 
sequence]. 

Often we consider the parameter a as quasi-static or slowly 
varying in some macrodynamics as the environment of the phenomena is 
gradually shifted. But the state variable x follows a fast 
microdynamics for each value of the parameter a. We study the case 
where   x   follows  the  gradient  of   f(x,a)    towards   the 

equilibrium states x where df/dx = 0; that is, the critical points 

X  are  the  only observable values of x  as  a  steady  state.   The 
fast dynamics dx/dt = -f  are shown in Figure 1(b). 

A  further plot of these steady state observable values of x  for 
each parameter value a  shows a folded curve,  the "critical manifold" 
in Figure 1(c).   Hence we attach the name "fold catastrophe" to  the 

3 3 function  family  f(x,a)  = x  -ax.   This function-family  (x   -ax). 
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3 
containing the non-generic function x , is the first of the elementary 
catastrophe models. 

If we  consider  a function family  f(x ,x ,a)  with  two  state 

variables  (x ,x ) and one parameter a,  then the catastrophe model is 

still called a fold,  since only one of the variables at a  time,  say 
X ,  can  enter  into the precise moment of transition under  generic 

conditions.   That is,  near x=0,  x=0, a=0 the family has the 

qualitative form 

3 2 fix^,x^,a)   =   (x^)  - a(x^) + (x^) . 

This still displays the fold catastrophe in (x ) and the gradient of f 

in  the direction of (x ) remains unchanged and uninteresting.   It is 

in this sense that Thorn asserts the uniqueness of the catastrophe that 
depends on a single real parameter a, and this explains the importance 

3 
of the fold catastrophe f(x,a) = x  - ax. 

If we now  allow two real parameters  (a ,a ),  then  there  is 

exactly one  catastrophe (in addition to the fold) and  this  is  the 
model  of  the  cusp  catastrophe  illustrated  in Figure  2.    The 

4    2 appropriate  function  family is f(x,a ,a ) = x  -c:„x  -ax  and  this 

4   2 
describes  a generic transition from (x  - x ) with a single  critical 
point.  (The cubic term is eliminated by simple preliminary coordinate 
transformations  without  affecting the qualitative form.)   The  cusp 
catastrophe  is  of primary  importance  in  discussing  multi-modal 
phenomena  that  depend  on two  exogenous  parameters.   Since  this 
geometric  situation  is  so  important  in both pure  and  applied 
mathematics,  we  offer  next  a somewhat  technical  description  and 
analysis  of this elementary catastrophe that is pictured in Figure  2 
(see Holt & Markus, 1978; Holt, 1977). 

Consider  first the cusp as described in terms of the 4th degree 
function family 

f(x,a  a^) = X  -a^x  -ax. 

Here the real-valued function of the single real state variable x can 

possess two local minima (where f' = 4x - 2a x -a has two or more 

real zeroes,  for instance at a  = 0  and  a  > 0 where we  compute 

x  = iV"?/^ ^^ local minima and x = 0 as local maximum).   On the 

other  hand  f possesses only one local minimum when f' has  only one 

real  zero  (for  instance  a  = 0 and a     <0  where  x  =0). The 

geometric  locus in the (a ,a )-plane separating the bimodal from the 
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4 2 
-   a^x ■   ax 

2 1 

single-modal behavior of the equilibrium state x (as observed at the 
local minima of f) is called the bifurcation locus and is here 
described by the cusp curve | 

27(ap^ - SCa^)^ - 0. 

In more detail the phenomenon described by observations  of  the 
local minimizing states for 

f(x,a^,a2) 

bifurcates  from  a  single-modal  to a bimodal behavior whenever 

f'  = 4x  - 2a X - cc ' 

has  a single real root x that splits into two real roots as  (a ,a ) 

changes. This bifurcation occurs at a double root of f', that is, at 
a common zero of 

f' = 4x  - 2a x - a  =0  and ' 

9 i ' 
f" = 12x  - 20^ = 0. 1 

Upon elimination of x from the equations f' = 0 and f" = 0, we find 
the  required cusp bifurcation locus in the (a ,a )-plane.   In Figure 

2, we illustrate the corresponding configurations for f, f', the 
bifurcation cusp, and the observed state on the critical manifold M . 

The  region bounded by rhe cusp bifurcation curve is covered by 
three sheets of the critical manifold M , but only the top (upper) and 

bottom (lower) sheets correspond to local minima of the potential 
function f,     and so these sheets yield observable values of the state 

X . The middle sheet corresponds to a local maximum of f, and hence 
the state x would diverge rapidly (under the assumed microdynamics) 
away  from  the middle sheet of M ,  because of measurement 'noise  and 

external disturbances, so x would not register an observable value 
there. 

In terms  of the microdynamics for the state x  at  each  fixed 
setting of the parameter a = (a ,a ),  only the upper and lower sheets 

of  M  constitute  "attractors" or stable equilibria  for  the  state 

variable x; but the nature and orientation of these attractor sheets 
depends on the setting of the control or environmental parameter a. 
Of couse,  outside the region of the (a  a )-plane bounded by the cusp 

curve,  the  single sheet of M provides the unique attractor for  the 

observable mode of the state. 

If we next follow a macrodynamical time trajectory for   (a (t), 
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a (t)) at slow speed in the control plane, then x (t) will follow the 

attractor surface M as closely as the geometry permits. For 

instance, if we take the macrodynamics along a = -t, a = +1 to 

define a slow parameter adjustment along the line a.     =  +1 moving from 

right to left in Figure 2, then for t < 0 the state x'"(t) rides on the 
upper  sheet  of  M ,  and  evolves   continuously until  the  moment 

t  =78/27  at the control point a  = -^8/27 ,  a  = +1;  whereupon the 

upper  sheet  of  M  disappears  and  the  observed  state  x'  jumps 

discontinuously to the lower sheet of M  for its subsequent evolution. 

Upon reversing the macrodynamical adjustment, the jump to the upper 
sheet of M occurs at the point a  =^8/27,  a  = 1.  Thus an asymmetry 

occurs in the behavior of the state x and this shows that current 
values  of  the  causal parameters (a ,  a )  are  not  sufficient  to 

determine  the state of the system,  but the whole past history of the 
process is required to specify the observed state. Such jump behavior 
and history-controlled violent processes are familiar in many 
contexts, particularly in the behavioral sciences. 

For the moment we only wish to point out that this classification 
of discontinuities is local in format (usually normalized to a 
neighborhood of x = 0,  a  = 0,  a  = 0) and is qualitative in nature. 

For example, jumps along the "fold line" of M  (near which the surface 

M  is merely a fold curve displaced trivially to form the surface) are 

essentially like the fold curve illustrated in Figure 1. The only new 
type of catastrophe in Figure 2 occurs in the locality of the cusp 
point  a = 0 ,  a = 0 ,  where the two fold lines run together.   At 

this cusp point,  the cusp catastrophe arises from the "unfolding"  of 
4 

the function family generated by x . 

Similar analyses hold for higher order catastrophes (the 
swallowtail, butterfly, and wigwam catastrophes) but these have 3-, 
4-, and 5-dimensional control spaces. In these cases we cannot give 
any helpful  pictorial representation of the  critical  manifold M . 

There are even more complicated catastrophes that involve two or more 
state variables, but we shall not go beyond the familiar fold and cusp 
catastrophes in this paper. 

With these preliminary examples and motivations in mind, we can 
now assert the mathematical theorem of R. Thom, as modified by Zeeman 
and rephrased by Markus. The mathematical terminology is technical 
but standard and has a precise meaning for which we refer to more 
advanced mathematical texts. 
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Theorem   Among the totality of smooth function families of  the  form 
f(x ,x ,...,x ,  a ,...,  a )   (with r < 5),  those families that are 

locally structurally stable constitute a generic set. Moreover, near 
each degenerate critical point the qualitative form of such a locally 
structurally-Stable function family is that of an elementary 
catastrophe. The number of types of elementary catastrophes are as 
follows: 

# Elera. Cat.  1   2  5   7  11. 

For  n = 1 and r = 1 there is only the fold catastrophe described 
3 

by f(x,a) = X  - ax near x = 0, a =0.  For n = 1 and r = 2, there is 
in addition the cusp catastrophe described by the "Thom polynomial" 

4       2 
f(x,a ,a ) = X  - (a )x  - (a )x  near x = a = 0. 

For n > 1 these Thom polynomials in the state variable x = x must  be 

supplemented by non-degenerate quadratic forms in the remaining (n-1) 
state coordinates. 

The fundamental existence and uniqueness theorem of Thom asserts, 
in the case of greatest interest for applications to behavioral 
sciences: 

For a single state observable (n = 1) there exists a unique 2- 
modal qualitative geometric form having at most two significant causal 
or control parameters--namely, the cusp catastrophe. Further, there 
exists a unique 3-modal qualitative form having at most four 
significant control parameters--namely, the butterfly catastrophe. 
Thus the cusp catastrophe yields the simplest description of a 2-modal 
phenomenon, just as the butterfly catastrophe gives the simplest 
description of a 3-modal phenomenon. 

Tomorrow's Catastrophe Theory. 

We conclude this paper with some tentative examples and 
incomplete investigations on the theory and the practicality of the 
method of catastrophes. First we discuss some research problems in 
the pure mathematics of catastrophe theory within the tradition of 
geometry. Later we conclude with some remarks on topics in applied 
mathematics, linking catastrophe analysis to behavioral science and to 
general questions of scientific methodology. 

A.  Theory of Catastrophes \ 

4   2 
Let  us  consider a curve,  like y = x  - x  in Figure  2,  that 
approaches + ~ as |x| ->■«'.  We count the number of critical points, 
all either local maxima (just one in this example) or local minima 
(two  in this example),  since these are the only possible  types 
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under assumptions of genericity. It is easy to determine that, 
for such generic curves y = f(x), a universal algebraic formula 
holds concerning the number of maxima and minima: 

j'Min - //max = 1. 

This is a very simple example of the general algebraic theory of 
critical points developed by Morse. But Morse found analogous 
complicated results for the numbers of critical points of generic 
functions defined on higher dimensional spaces, and he related 
these critical points to the geom.etry and topology of the 
underlying space. For instance, if we study f(e), where 6 is an 
angular coordinate on a circle (topologically different from the 
real x-axis) then a different algebraic result holds: 

#min - irinax = 0. 

Next,  suppose two different generic curves are given f  and 

f   (say,  defined for 9 on the circle---to avoid analysis at   ») • 

Now let us try to interpolate between these two functions using a 
real parameter a on 0<a<l.  That is, we seek a function family 

f(8,a), for 9 on circle, 0<a<l, 

so f(9,0) = ^Q(^)   and f(9,l) = f-,(9).  Moreover let us demand that 

f(9,a) is a generic function family; then we know that only fold 
catastrophes can enter among the critical points. 

We propose a research problem to classify and count the types and 
numbers  of  catastrophes that can (or must) enter into  such generic       j 
function  families  on the circle or on higher dimensional  state  and       i 
parameter  manifolds.   In other words,  construct some kind  of  a       J 
generalization of  Morse-theory for catastrophes.   A start has  been 
made in this project by Markus and others,  but no satisfactory theory 
has been developed (see Markus, 19 79). | 

Now let us turn to a different type of problem involving 
dynamical systems for the state x of a particle moving along a 
line, subject to a force -df/dx arising from a potential f(x). 
Then Newton's dynamical law yields x = -df/dx. 

2 
If  f(x)  = X ,  then  the  dynamical  system  is  a  linear 

oscillator  about the critical point x + 2x = 0.   In terms of the 
(x,y = x) state-plane,  the system becomes  x = y,  y = -2x with 
solution portrait,  shown  in Figure 3.   On  the other hand, if 

2 
f(x)  =  -X ,  then the dynamical system is  that  for  a  linear 
repulsive  force,  namely an unstable saddle point,  also shown in 
Figure 3. 

The research problem concerns the possible interpolation 
between these two linear systems, with a parametrized function 
family  f(x,a).   If  a  is  a  single  real parameter  then  the 
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3     ••    2 transition is at a fold catastrophe f = x with x + 3x =0,  and 
the corresponding solution portrait shows no periodic orbits. 

On the other hand if a  = (a ,a ) then the nature of the cusp 

catastrophe  gives  the  certainty of  an  intermediate  dynamical 
3 

system  like x + x =0 (translations of the coordinates to  bring 
the critical point to the origin,  and qualitative transformations 
of coordinates are used freely in this casual analysis).  But this 
last  system does have an infinite family of periodic orbits  with 
the remarkable novelty that there are arbitrarily long periods 
(see Markus, 1971). 

Can we construct a coherent and sensible mathematical theory 
of parametrized dynamical system that utilizes the full knowledge 
of the elementary catastrophe critical points? 

B .  Applications of Catastrophes 

As far as practical programs and actions go, can we take 
this subject seriously--all this talk about conies, quadrics, 
bifurcations along bending wires, and pleating paper sheets? Is 
this a worthwhile intellectual pursuit for healthy adults? The 
query is blasphemous. 

No subject studied in universities is more important than 
the contrast of an elliptic-paraboloid (hilltop) and a hyperbolic- 
paraboloid (saddle col). The distinction between an ellipse and a 
hyperbola is precisely that between an attractive and a repulsive 
force; that between an electron and a proton; that between 
Newtonian mechanics and Einsteinian mechanics; that between 
welfare socialism and market capitalism.  So enough of that! 

But can we become highly emotional over this subject? How 
can catastrophe theory become controversial, make life-long 
personal enemies, and invoke rage and fear? Why is there an 
enthusiastic pro-catastrophe article in the Scientific American 
(Zeeman, 1976) while there is a sarcastic anti-catastrophe article 
in The Sciences (Sussmann & Zahler, 1977)? 

The irritation, rage, fear, and controversy have been induced 
by the manner of the exposition of some of the more popular 
versions of the applications of catastrophe theory. In these 
examples, the dynamics are not presented in deterministic terms, 
say rocks rolling under prescribed forces, as much as in 
teleologic terms describing new insights into the overriding 
purposes and preferences of natural phenomena. In these popular 
approaches, catastrophe theory is claimed to stake out limitations 
on the human imagination and on the concepts of subjective and 
objective reality. In other words, catastrophe theory is 
presented as a new philosophical theory of epistemology. 
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In order to bring these rather fragmentary philosophical 
comments into focus, let us consider, in abbreviated form, the 
famous example explaining how a dog bites a man  (see Figure 4). 

AGGRESSION IN DOGS can be described by a model based on the cusp 
catastrophe. The model assumes that the aggressive behavior of the 
dog is controlled by two conflicting factors, rage and fear, which are 
plotted on a horizontal plane, the control plane. The behavior of the 
dog directed against the man ranges from attacking to retreating and 
is represented on the vertical axis. For any combination of rage and 
fear there are as many as three possible states of aggression for the 
dog, as read from the graph of the behavior cusp-surface. We assume 
that the cusp catastrophe must be the central feature of this problem 
in animal behavior since there are two control parameters, and Thorn 
has proved that the cusp-surface is the only surface displaying the 
significant geometric phenomena of multi-modal behavior with jump 
discontinuities between the sheets of the surface. In other words, we 
select the cusp-catastrophe because we have made a mental commitment 
to utilize one of the elementary catastrophes of Thom and this is the 
only elementary catastrophe involving just two control parameters. 

If an angry dog is made more fearful, its mood follows the 
trajectory A on the control plane, as interpreted in Figure 4. 
Similarly, a frightened dog that is angered follows the trajectory B. 
The dog's behavior remains on the bottom sheet of the cusp-surface 
until that sheet disappears, then it jumps to the top sheet and the 
dog attacks and jumps at the man. Tliis explains how a dog bites a 
man. 

How are we to interpret this story? Is it a serious study in 
animal behaviorism or is it a useful illustration of the geometric 
features of the cusp-catastrophe with some casual indications on how 
this approach might conceivably be useful in some later psychological 
studies? I am more inclined to the latter choice. It is not 
difficult to criticize this example; the difficulty is to defend it. 

The defense of this method of dealing with natural phenomena 
directly by the geometry of the elementary catastrophes rests on two 
principles in the philosophy of mathematical modeling: 

1. Structural Stability (repeatability or robustness) 
Small perturbations of the data defining a natural phenomenon 
will not change the qualitative structure of our model of the 
phenomenon. 

2. Genericity 
Our model should ignore or eliminate any unnecessary 
assumptions of symmetry, causation, or special numerical 
coincidences. (Newton said, "l make no hypotheses.") 

In summary, we recapitulate our basic philosophy, namely, the 
elementary catastrophes are a good place to start in the modeling of 
natural processes that display the phenomena of multi-modal behavior, 
jump discontinuities, hysteresis, and divergence of development under 
slight variations in the environmental modifications. Moreover, 
catastrophe theory provides a conceptually  coherent,  philosophically 
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attractive, and mathematically tractable and workable mechanism for 
the analysis of complex natural phenomena. But one must always be 
aware that catastrophe theory is merely an analytical tool, and a tool 
is practical and useful only in the hands of an experienced and 
skillful master of his discipline or craft.  . •'•   i 

COMMENTARY 

Markus demonstrates that catastrophe theory, as mathematics, is 
part of a long tradition of geometric results. It has both depth and 
substance. 

A strong theme is the use of quadratic polynomials or conic 
sections as the basis of scientific models. But Markus is most 
concerned about the transition between one such form and another, such 
as that between ellipse and hyperbola. The traditional Apollonian 
transition, the parabola, appears from the modern viewpoint to be the 
"wrong" intermediary. It is too degenerate and the correct 
transition should bring in cubic or higher degree terms to the 
equations. 

To  elucidate Markus's meaning here,  consider the mathematically 
2 

simpler but analogous problem of finding a transition between x  and 
2 

-X .   The  "obvious" way to achieve this is to take  the  1-parameter 
9 

family of quadratics ax  and let a (the parameter) run from -1 to +1. 
This gives the transitional form as 0. 

But  to  a  topologist,   zero  is  hopelessly  and  enormously 
degenerate,  far too special to be appropriate.   So what should it be 
replaced by?    Qualitatively  the significance of the  original  two 
quadratics  is that they define certain standard  structurally  stable 
forms,  and  if higher terms such as cubics are added  to  them,  the 
result remains equivalent to the original.    These higher order terms 
may thus be ignored precisely when structural stability holds, and the 
place  they may not be ignored is at the transition point.    So  the 
hidden' cubic terms must be added back in.    Now we are looking for 

2   3      2    3 the transition between,  say, x + x  and -x + x so we introduce the 
2    3 

parametrized family ax + x  and run a from -1 to 1.    The transition 
3 ' then becomes not zero, but x . 

Even this, topologically, turns out not to be the "right" answer. 
The most natural transition requires a constant fourth-order term and 
a linear term with an additional variable parameter--precisely, the 
cusp catastrophe. 

It is natural because it renders the entire transition process 
structurally stable. Although the catastrophe theorist's emphasis on 
that property should be treated with caution and in a suitable 
context, critics take it far too lightly. Structural stability and 
genericity are highly important and desirable properties, once 
correctly  formulated within a given context,  and this point of view 
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has  been urged by many eminent mathematicians during the past  fifty 
years: Pontryagin, Lefschetz, Smale, Arnold, Thorn. 

While professors Hastings and Markus were on campus, a 
discussion was held on 'competitive vs. cooperative systems." 
(Participants in this discussion included professors Hastings, Markus, 
Johnson, Lacher, graduate students Carney, Castellano, Duckwall, and 
Fletcher.)  A model emerged which we now describe. 

A model  describing transition between  cooperative  and  competitive 
systems. 

A society consists of two (groups of) citizens A and B who 
communicate all information freely, but who can act individually (with 
only self-interest) to improve his (or her) own position. A "state" 
of the society is a point (x,y) in the x,y plane. 

Citizen A has access only to the x-coordinate; he can increase 
or decrease x in small (or infinitesimal) steps. Similarly B has 
access and can change only the y-coordinate. Each citizen moves 
(relatively slowly) his coordinate until he is satisfied that no 
further improvement is available to him personally. Personal 
satisfaction is determined by net pay which in turn is affected by the 
state of society (i.e., the x,y coordinates) and the rules governing 
distribution of wealth. 

Cooperative  system.  Citizens share wealth equally,  so each  is 
paid an amount of one-half of society's total wealth, 

2  2 2  ^ 
(i.e., (T-x -y )/2).  The government gets x ^-y" for communal services. 

2  2 
Competitive system.  Citizen A is paid (T-x +y )/2 and B is  paid 

2  2 
(T+x -y )/2.   The government  gets nothing  (except,  in  an 
expanded model, what it earns as a citizen). 

In either system, the constant T is a theoretical total wealth 
of society (sort of a gross national product (GNP)). 

Note that in either model,  each citizen maximizes his  personal 
income by moving his coordinate toward zero,  so that the origin x=0, 
y=0  is  a  (the only) stable equilibrium  in  either  case.   In  the 

2  2 
cooperative  system,  tax revenue x +y  is minimized to zero.   In the 
competitive model,  if A is the government,  say,  then A's income (as 
well as B'S) is optimized. 

Examining the two income functions, for B, say 

(T-x^-y^)/2  vs.   (T+x^-y^)/2, 

we recognize a change of form of the type discussed above. 

In fact, a linear change of coordinates (affine transformation) 
reduces these two income functions to 



2     2 
vs •x^/2 

2 
+ y /2 

Catastrophe theory says that the simplest structurally stable form 
containing these two is 

ax + bx^/2 + x^/4 + y^/2 

a cusp catastrophe. (Here "simplest" means up to pseudolinear 
coordinate changes, assuming no symmetry constraints). 

We will not speculate on the possible meaning of the two control 
parameters  a,b  in  this  context;  they are given to  us  from  the 

2 
"unfolding"  of  the  x  singularity,  so they arise  from  legitimate 
mathematical considerations. The "cooperative" and "competitive" 
models are embedded into a structurally stable parametrized family of 
models. Investigation of these models and possible transition paths 
between competitive and cooperative could prove interesting. 

82 



♦- X 

t>; = -1        cX = 0 
no critical point    x* = 0 

(degenerate) 
-n- w N critical point Figure   1 (a), -^ 

-^ ^ <e- 

X  =   -3x  -1 

Microdynamics     x. 

x  =   -3x 

=   -f 

c<'. 

X* 

=    +1 

-X, 

mxn 
ma: 

X   =   -3x   +1 

Figure   1(b) 

State    h 
space 

fast  microdynamics 

pro3ection 

f (x,c<)   =   x^- -x x 

As    v<.   passes   from  +1  to   -1, 

x''   disappears   at     c.;.   =     ci   -   0 

critical  manifold 

Figure   1(c),      FOLD  CATASTROPHE       f  =  x^   -c<: 

83 



Microdynamics     x  =   -f 

'^ »«-»■>-i" .^^ <—       > —^ ■^*<-<— ■i-n^ <—^ 
A 

Figure   2.        CUSP   CATASTROPHE     f   =  x^   -c^x^   -•X.x 

84 



*- X 

X = -X 

Figure 3.   BIFURCATIONS THROUGH CATASTROPHES 
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Figure 4.   AGGRESSION IN DOGS.  This figure is sketched from E. C. Zeeman's 
well-known Scientific American article, 1976. 
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COMMENTS ON THE ROLE OF CATASTROPHE THEORY 
IN THE SOCIAL SCIENCES 

Carl P. Simon 

In their papers in this collection, Professors Holt and Stewart 
are enthusiastic about catastrophe theory and its applications in the 
social sciences. Both authors can back up their enthusiasm by- 
pointing to the incisive research articles they have written applying 
catastrophe theory in a variety of efficient areas. Furrhermore, 
Stewart's books with Poston (1976, 1978a) on catastrophe theory are 
the best written, detailed introductions to the subject. 

As Stewart (and Markus) points out in these proceedings, 
catastrophe theory "provides a versatile and flexible range of 
nonlinear models which are simple and natural from the mathematical 
viewpoint" (page 21 of this work). It is an aesthetic and potent 
technique for handling modeling situations which involve sudden 
discontinuities, hysteresis, multimodal distributions or divergent 
behavior from similar input paths. When carefully applied, 
catastrophe theory can also provide a rich modeling vocabulary which 
draws the modeler's attention to such key concepts as genericity, 
structural stability, and behavioral surfaces. Finally, although it 
is based on some incredibly sophisticated mathematical theorems, it 
can usually be explained rather quickly and completely to anyone who 
is comfortable with elementary mathematical concepts so that the 
student can not only read papers which use catastrophe theory but even 
consider writing one himself. 

However, this ease in quickly explaining the concepts of 
catastrophe theory to a neophyte leads to one of the major problems 
that has arisen in the controversy over catastrophe theory, namely the 
belief by some that one can make catastrophe theory the cornerstone of 
mathematical modeling in the social sciences. 1 do not think that 
Holt and Stewart share this belief, but some of the passages in their 
papers appear to encourage it. For example, after lamenting "the 
paucity of well-articulated mathematical structures that are 
appropriate for the classification and description of social 
phenomena" (page 42 of this work), Holt writes in his article: 

We are suggesting that catastrophe theory 
models ... do provide a very useful 
classificatory structure in which to construct a 
theory, just as the geometry of conic sections 
provides models in terms of which orbits and 
trajectories can be classified. While astronomy 
involves extremely accurate observations of a 
dynamical system following a deterministic 
evolution, behavioral sciences deal with much less 
precise data having a different sort of causal 
basis. These epistomological diversities are 
reflected in our choice of classificatory geometric 
models,  as we turn from the quantitative  elliptic 



curve of Kepler to the qualitative butterfly 
surface of catastrophe theory. But the principle 
of describing empirical phenomena in terms of a 
mathematical  structure  remains the same. 

Stewart is not quite so direct. In his section on model 
selection, he points out that the "traditional models used in social 
science are overwhelmingly linear as regards the underlying 
mathematical structure .... A major reason for this emphasis on 
linearity ... is that nonlinear mathematics is usually much harder 
than linear mathematics" (page 18 of this work). After commenting 
that the process of model-selection is necessarily heuristic," 
Stewart concludes that "the catastrophe theory approach is a natural 
one, based upon a proper understanding of the mathematical 
possibilities and their relative simplicity or complexity" (page 2 1 
of this work). 

As enthused as I am about the successes--both actual and 
potential--in using catastrophe theory in social science models, I do 
not think it is at all wise to encourage hopes that catastrophe theory 
be the (or even a) cornerstone of social science modeling. After all, 
catastrophe theory is just one tool in the standard math modeler's 
toolbox--a toolbox which should certainly include other techniques 
such as matrix theory, calculus, optimization (constrained and 
unconstrained, linear and nonlinear), the implicit function theorem 
and "comparative statistics," ordinary and partial differential 
equations', difference equations, optimal control, topology, functional 
analysis, graph theory, combinatorics, game theory, statistics, 
probability, and stochastic processes. A good physicist or engineer 
is familiar with most of these areas. I don't think that it is a 
coincidence that some of the most exciting uses of catastrophe theory, 
such as buckling of beams, stability of ships, and geometric optics 
(see Poston & Stewart, 1978a; Guttinger & Eikemeier, 1979) have come 
in physics and engineering and have involved research in which 
catastrophe theory did not play the major role but mostly helped to 
choose the most effective functional forms at certain stages or to 
sort out the analysis at certain bifurcation points. 

There are certainly other reasons why catastrophe models have had 
more success in the physical sciences than in the social sciences. 
One can quickly point in the former to the exactness of measurement, 
the longer history of quantitative modeling, and the absence of 
unpredictable interactions with living organisms, such as human beings 
and their communities. [See Chapter 17 of Poston & Stewart, 1978, for 
a more complete discussion of the difficulties of mathematical 
modeling in the social sciences.] However, I am still struck by a 
comparison of the inclination of physicists and engineers to use 
catastrophe theory as simply one important technique among many with 
the tendency of many social scientists to base their modeling almost 
completely on the tenets of catastrophe theory. Even among social 
scientists, I have found that the richer the array of mathematics used 
in models which involve catastrophe theory, the more convincing are 
the conclusions of the model, with the shallowest models simple 
attempts to show that the global graph of one of the catastrophe 
surfaces is the behavioral surface of some social phenomenon. 
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Both Holt and Stewart place much more emphasis on fitting data 
to curves and surfaces as a role of mathematical modeling than I feel 
comfortable with. [See, for example, Holt's discussion of Kepler's 
work at the foundation of modern astronomy and mechanics, page 41 of 
this work.] 

In addition, I find it strange that social scientists should 
embrace catastrophe theory as a possible cornerstone of modeling in 
the field when most social science journals (outside economics) will 
reject as too mathematical any article which contains significant 
amounts of simpler, more basic mathematical concepts, such as the 
implicit function theorem, constrained non-linear optimization, and 
optimal control theory. 

So, while Stewart decries "a shortage of . . . mathematicians 
with an interest in developing models in social sciences" (page 31 of 
this work), I feel that one should also lament the lack of 
mathematical interest that seems common in programs in political 
science and sociology. It is certainly very easy to earn doctorates 
in either of these fields without ever taking a course in calculus as 
an undergraduate or graduate. Researchers in these fields with some 
mathematical sophistication are still somewhat rare and are still 
usually compelled to publish their calculus-based results in journals 
which are out of the mainstream of their fields. 

In discussing recent work on the use of the cusp catastrophe in 
bifurcations to multimodal distributions, Stewart asserts that "we 
should learn to walk before we try to run" (page 24 of this work). 
In the same spirit, I would summarize my comments by encouraging 
social scientists to bring calculus-based modeling techniques into the 
mainstream of social science research before we turn them on to 
catastrophe theory as a possible cornerstone of their basic nonlinear 
modeling. Besides making these models richer and more versatile, this 
will also help these scientists understand better the actual 
ingredients of catastrophe theory, such as its reliance on gradient 
dynamics (at least in dimensions greater than one) and the fact that 
the theory gives a quantitative description of behavioral surfaces 
only in small regions around bifurcation points. 
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COMMENTS ON SOME CURRENT DYNAMIC PROBLEMS 
IN ECONOMIC MODELING 

Carl P. Simon 

Economics appears to sit right in the middle of the scientific 
spectrum--much less exact than physics, engineering, or even biology, 
but more quantifiable than political science and sociology. Unlike 
most political science students, undergraduate economics majors 
usually must take a solid calculus course while graduate economics 
students at top universities are usually required to learn most of the 
mathematical topics I listed in the previous comments section before 
they can begin to write their dissertation. (Nevertheless, unlike 
physical science graduate students, they usually squeeze their math 
and statistics courses into one intense graduate year instead of 
spreading them out throughout the program and basing other courses on 
their earlier mathematical ones.) Just about any economics journal 
will accept articles describing sophisticated mathematical models. No 
one would dream of encouraging economists to make catastrophe theory a 
modeling cornerstone, even though abrupt change, hysteresis, and 
stability are important economic phenomena. Economists, such as 
Balasko (1978) and Varian (1979), have successfully used catastrophe 
theory as one technique among many which can shed light on important 
economic phenomena. 

I guess my suggestions for the use of catastrophe theory in 
administration should be obvious. I would encourage researchers 
building and studying models of administration to learn about and use 
techniques of catastrophe theory. But more important, they should 
develop a working knowledge of most of the topics listed earlier and 
should not single out catastrophe theory as a centerpiece. Many 
economics departments have a one or two semester course which tries to 
cover in some detail many of the mathematical topics I listed in the 
previous comments section. [1 help teach such a course at the 
University of Michigan and Ph.D. students in the University's public 
administration program (IPPS) usually take this course along with the 
basic graduate courses in microeconomic and macroeconomic theory. I 
would sugest that this is the minimal background that anyone 
interested in models in administration should have. After this, a 
working knowledge of catastrophe theory would be icing on the cake.] 

I would like to close this commentary by discussing a phrase 
which Stewart used often but discussed very little--"dynamical 
systems." I include among dynamical systems the study of ordinary 
and partial differential equations (linear and non-linear), difference 
equations, dynamic optimization, and control theory. In fact, I would 
probably include catastrophe theory as a subfield of dynamical systems 
because it really does focus on the behavior of the attractors of 
gradient differential equations. (I am using dynamical systems a bit 
more broadly than it is sometimes used, since it often focuses on 
stability and periodicity questions of autonomous (usually non-linear) 
differential equations on non-linear surfaces, based on the pioneering 
work of Poincare and the more recent work of Smale. See for example 
Smale,  1967.)   There are two trends in the use of dynamical  systems 
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in economics which deserve special attention and which could bring 
about some significant changes in the subject. The first is the 
growing extensive use of partial differential equations in economic 
analysis. This use has occurred in a number of different areas 
without much connection between them. One of the first areas involved 
the consistency of consumer choice with rational preference relations. 
One says that a commodity bundle x is "revealed preferred" to 
commodity bundle y (abbreviated xSy) if the consumer chooses x when he 
can afford y too. If the binary relation S is asymmetric, i.e., xSy 
implies not ySx, then we say that S satisfies the weak axiom of 
revealed preference (WARP).   If S  is  acyclic,  i.e.,  x Sx S. . .Sx 

implies  not x Sx ,  then we say that S satisfies the strong axiom  of 

revealed preference (SARP). The earliest proofs that a preference 
ordering that satisfies SARP can be represented by a continuous 
utility function U involved showing that a certain system of partial 
differential equations for U satisfied the necessary Frobenius 
conditions and were therefore solvable for U. In fact, Hurwicz and 
Richter's (1979) proof of this result illustrated close connections 
with the two fundamental principles of the thermodynamics and the 
existence of entropy. [See Chipman, Hurwicz, Richter, S; Sonnenschein, 
1971, and Sondermann, 1982, for more complete discussions of this 
integrability question.] 

A second, rather different application of partial differential 
equations in economics has arisen in portfolio theory and option 
valuation. (Actually, both of these applications do have one major 
factor in common--both studies were pioneered by the work of Paul 
Samuelson.) A call option on a stock with exercise price c and 
expiration date T is basically a ticket which entitles its bearer to 
buy a share of the stock at the terminal date T, if he wishes, for a 
specified price  of c dollars.   If the stock price S  at time  T  is 

greater than c, then the option bearer can buy a share at T for c 
dollars,  resell  it for S  dollars,  and make a profit of S.^-c  (less 

brokerage and option costs). Using principles of Brownian motion. 
Black and Scholes (1973) developed and solved a second-order partial 
differential equation which showed exactly how a rational investor 
should value such a call option. This is still an active area of 
research in both economics and finance departments, now involving 
martingales and stochastic integration. [See for example, Harrison, & 
Pliska, 1981.] 

More  recently,   partial  differential  equations  have  arisen 
naturally  in dynamic models involving differentiated commodities  and 
consumers.   In neoclassical Arrow-Debreu economic models,  a  finite 
number of consumers choose a commoditv bundle,  i.e., an amount x. for 

1 

each  of n possible commodities;  each commodity has a price per  unit 
p.. So the price of bundle (x,,...,x ) is simply p.x +...+p x . One 
^1 ^ 1'    n       ^^11    ^n n 
can  ask how these prices change over time and are then led to  some 
interesting ordinary differential equations for the p. s. 
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However, in the newer models with differentiated commodities and 
consumers, commodities are classified by their characteristics or 
qualities which lie in some subset- of Euclidean space. Nearby- 
parameters are used to characterize similar qualities. On the one 
hand, there are firms manufacturing goods with different 
characteristics; on the other hand there is a large set of consumers 
parametrized by their tastes who are choosing which characteristics to 
consume. There are natural ways of assigning prices (hedonic prices) 
to characteristics. [See Rosen, 1974.] So let p(x,t) denote the 
price at time t of one unit of a good with characteristics x. Now, 
there is no reason to assume that prices are linear in x or even that 
X lies on a linear space. If one studies the process in which a short 
run equilibrium (supply = demand) is reached or if one goes further 
and studies the movement of firms as they progress from a short-run to 
a long-run equilibrium, one is naturally led to a partial differential 
equation for p(x,t). These equations are usually second order and 
non-linear in x. However, in recent papers Sonnenschein (1981, 1983) 
developed an example in which the classical heat equation arose as the 
natural dynamic for myopic firms using short-run profits as signals 
for movement toward a long-run equilibrium. This author and others 
are working on generalizing Sonnenschein's work. Catastrophe theory 
has played a non-trivial role in one paper (Simon, 1979) in this 
direction. 

The other type of dynamical system which is drawing considerable 
attention among economists is the non-linear difference equation. 
Until recently, economists automatically used differential equations 
to model non-linear dynamics, mostly because the mathematical theory 
of non-linear differential equations (e.g., the Poincare-Smale school 
of dynamical systems) is much more developed than the corresponding 
theory of difference equations (unless the difference equations are 
characterized by smooth, invertible functions, i.e., diffeomorphisms). 
On the one hand, I believe economists realize that most dynamic models 
involve changes over discrete units of time so that difference 
equations are probably more appropriate modeling vehicles. On the 
other hand, there is a general belief--based on experiences with the 
linear theory--that the solutions of the differential equations are 
good approximations of the solutions of the corresponding difference 
equations. To see how far from the truth this approximation 
expectation can be, consider the first-order difference equation 
X ^ = f(x ) and its corresponding first-order autonomous differential 

equation x = F(x).   Solutions of the latter can have exactly one of 
the following three simple motions:  (1) stationary point,  (2) a path 
which moves  asymptotically  and monotonically  toward  a  stationary 
point, and (3) a path which moves monotonically toward (plus or minus) 
infinity.    Nothing more complicated can occur on the line in forward 
or backward time--not even simple periodic motion.  On the other hand, 
almost  anything  can occur for the  simplest  nonlinear  first-order 
difference  equation--the  quadratic x ,, = rx (1-x ),  where r  is  a n+1    n   n 
parameter usually between 0 and 4 and 0 < x  < 1.  For small values of 

— n — 
r,  all orbits tend asymptotically toward zero.   However, for certain 
larger values of r,  the orbit of a generic point fills up the whole 
unit  interval  in  the sense that given any small  subinterval  J of 
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[0,1],  some  iterate of the point under the difference equation will 
eventually hit J.   Furthermore,  the motion is essentially random in 
that  if one divides the interval into two subintervals J^=f0,.51  and 

0 
J =[.5,1],  and  if  one knows which J. contained each of the first  N 

-L 1 

iterates of a generic point,  one cannot predict which J. the  (N+l)st 

iterate will land in. To make matters even worse, these "ergodic 
properties" of this quadratic difference equation vary wildly with r. 
So, to say the least, the orbit structure of non-linear, first-order, 
autonomous difference equations can be an order of magnitude more 
complicated than the corresponding structure for the corresponding 
differential equation. This dichotomy increases in dimension two 
where difference equations can be wilder still, yet the Poincare- 
Bendixson Theorem tells us that bounded orbits of planar, autonomous 
ODE'S are either stationary, periodic, or asymptotic to a stationary 
or periodic orbit. It is only in three dimensions that truly 
complicated behavior can arise for bounded solutions of autonomous 
ODE's . 

So, economists (and applied mathematicians) have two challenges 
here. First, understand better the trade-offs one makes when one 
approximates a discrete dynamic phenomenon by an ordinary differential 
equation. Second, understand more clearly the complicated dynamics 
which I described previously for simple non-linear difference 
equations. Naturally enough, such dynamical systems have been called 
chaotic systems." One reason they are particularly interesting to 

economists is the new realization that behavior that appears chaotic 
or random can sometimes be modeled by a simple, deterministic, 
possibly even first-order difference equation. Recently, Richard Day 
has been especially active in demonstrating that chaotic difference 
equations arise naturally in many economic settings and in 
illustrating in some cases just what this entails for the 
corresponding economic phenomenon. 

I have described two aspects of dynamical systems which are 
playing a major role in current economic modeling--partial 
differential equations and chaotic difference equations. There is, of 
course, a rich diversity of other developments in dynamic economic 
modeling, e.g., Smale's dynamic models of repeated Prisoner's Dilemma 
games (1980) and, of course, the growing interest in catastrophes, 
singularities, and bifurcations. These developments, both separately 
and in their interconnections, are making dynamic economics one of the 
most active and exciting areas of current mathematical modeling. 
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CATASTROPHE THEORY AND ADMINISTRATIVE MODELS- 
REACTIONS ON THE STATE OF THE ART 

Harold M. Hastings 

As evidence of the potential for 
applications, this article points to the ability of 
catastrophe-theoretic models to deal in a simple 
way with jump phenomena and history-dependent 
behavior. It places emphasis on the need for team 
efforts in any research projects on this topic. 
The subject is multidisciplinary and it is unlikely 
that a single individual will be able ro combine 
the necessary expertise. 

It suggests two classes of problems for 
further work: fairly specific and limited problems 
that appear feasible now, and more ambitious 
problems that might prove fruitful in the future. 

1 Accompiishments. 

1.1 Catastrophe theory has provided a class of building blocks to 
model situations where small, continuous changes in inputs 
produce abrupt jumps in behavior. This provides a 
prescription for the modeling of many phenomena in the social 
and administrative sciences: first describe the qualitative 
features of the phenomenon to be studied; then find a suitable 
catastrophe; and finally, build the model. However, caution 
is still needed in applying these models. 

1.2 Catastrophe theory has provided a simple way to include the 
role of past history in the present dynamics of a model. 

1.3 Catastrophe theory has provided some impressive models, of 
which the model for anorexia nervosa is the most dramatic. 
IT IS MOST LIKELY THAT THE BEST RESULTS WILL CONTINUE TO COME 
FROM TEAM EFFORTS INVOLVING MATHEMATICIANS AND OTHER 
SCIENTISTS. 

2 Remarks on the lexicon. The lexicon will perform its most useful 
service in facilitating the communication mentioned above. To 
serve this purpose the lexicon must be as well written as a good 
text on engineering science, including explicit statements of the 
hypotheses needed for a specific application. It was apparent to 
me that we still need to bridge the gap between our own discussions 
of administrative science and of catastrophe theory. 

3 Feasible goals for the near future.   I will briefly list some of 
the  projects which I feel can be accomplished in the near  future 
and which will be needed in most applications. 
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3.1 Continued development of a language for modeling using 
catastrophe theory 

3.2 Developing useful descriptions of the dynamics near the 
catastrophe surface ( The terms FAST and SLOW must be 
incorporated.) 

3.3 Understanding the role of noise in catastrophe theoretic 
modeling 

3.4 Developing a theory of stability with respect to a time series 
of perturbations of not-necessarily very small size 

3.5 Clarifying the relationship between descriptive and 
mechanistic models ( I feel that descriptive models are 
helpful, both in and of themselves, and as precursors for 
mechanistic models. However, the prospective user must be 
wary of placing too much reliance on purely descriptive 
models.) . '       . 

3.6 Clarifying the role of intuition in catastrophe theoretic and 
other approaches to modeling. - • ' 

4  More difficult projects.  The following projects are more difficult 
but are still quite likely to be beneficial. 

4.1 Incorporate catastrophe theoretic dynamics into automata or 
general systems ( The biologist's understanding of the 
Hodgkin-Huxley  oscillator may serve as an initial prototype.) 

4.2 Develop a theory of systems identification for catastrophe 
theoretic models 

4.3 Combine at least elementary aspects of control theory with 
catastrophe theory to provide one possible approach to non- 
linear control theory. 

COMMENTARY 

There already exists some intertesting work relating the Hodgkin- 
Huxley equations to catastrophe theory, due to Isabel Labouriau (at 
present unpublished). This uses the imperfect bifurcation theory of 
Golubitsky and Schaeffer (1979a, 1979b) (a variation of Thom's 
elementary catastrophe theory) and the subsequent work of Golubitsky 
and Langford (1981), to study periodic solutions to the space-clam.ped 
Hodgkin-Huxley equations. There is an organizing center of topological 
codimension 2 which predicts the qualitative form of the bifurcation 
diagrams obtained numerically by Rinzel and Miller (1980). 
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THE ROLE OF CATASTROPHE THEORY 
IN SOCIAL ORGANIZATION MANAGEMENT 

John E. Stecklein 

This presents the researcher's view of the 
problems. Many observed phenomena appear to 
display features remeniscent of the elementary 
catastrophes so there is no shortage of areas to 
which the theory might be applied. There is, 
however, a shortage of fully developed work. 

Teamwork is going to be crucial to any such 
project, and it is not going to be easy to assemble 
suitably qualified teams. 

The main immediate prospect is a general 
increase in understanding rather than a specific 
breakthrough on a practical problem. 

Analogies between one field of application and 
another could be useful. 

Specific applications might include sudden 
shifts in behavior and decision-making processes. 

Torgerson (1969) has defined an organization as a system of 
continuously and consciously coordinated activities of two or more 
persons. An organization is a dynamic system, thus appropriate for 
analysis and attempts for greater understanding by the possible 
application of the mathematics of nonlinear dynamical systems. The 
central concern of this paper is ways in which a mathematical model of 
a special kind of dynamical system can be utilized by managers, 
researchers, or others involved in and concerned about the effective 
operation of organizations, by citing possible appplication to one 
kind of social organization--a college or university. 

I agree with Poston and Stewart (197Sa) when they say that one 
must understand in some detail the precise mathematical hypotheses 
involved in these mathematical models, and the way they lead to 
conclusions, in order to even begin to have a thorough grasp of when 
catastrophe theory may and may not be an appropriate choice for 
modeling. Although I thought I had, I do not believe that I have yet 
achieved that level of understanding. It is difficult, therefore, to 
speculate with any degree of certainty, how useful nonlinear modeling 
might be in dealing with organizations. Certainly some similarities 
and parallels to situations in which catastrophe theory has already 
been applied occur to me. As to how relevant they are and how easily 
they might be refuted, I have no idea. Nevertheless, it might be of 
some use to list such speculative situations or conditions of 
organizational functioning that might lend themselves to at least the 
more elementary models of catastrophe theory. 

I do believe that there is potential here, but achieving this 
potential  will   take  much  time  and  effort  and  the  combined 

97 



imaginations, expertise, perspectives, and insights of teams of 
mathematicians and practitioners in the operation and study of 
organizations. Because I have been convinced of the desirability of 
such team-attacks to the problems, I thought that the idea to attempt 
to bring such teams together was excellent and I was eager to 
participate. My participation has served to clarify the difficulties 
involved in finding individuals who are confident enough in their 
fields of specialization to go afield, so to speak, in considering 
this type of cross-over, and perhaps, more importantly, to find 
individuals who, although highly specialized in their fields, are able 
to communicate in other than their own specialized jargon. Your 
approach to bring in several teams with different mixes of 
mathematicians, statisticians, and field specialists will give you 
more insight into the kinds of combinations that can communicate best 
and work most effectively. 

Poston and Stewart (1978a) also make the point that catastrophe 
theory is not purely qualitative as its critics sometimes claim. They 
cite the progress made in applying catastrophe theory to the physical 
sciences and evidence of such progress in the biological sciences. In 
the former the opportunity to select "simple" systems, and "more 
recently, [of] those with disorganized complexity, which can be 
'statistically simple'" (page x.), provide opportunities to apply 
catastrophe-theoretic methods useful in furnishing quantitative 
information which may be confirmed by experiment. It may be that the 
social sciences will again follow the physical and biological sciences 
in the evolution of new tools useful in understanding the fields. 

Until we reach the stage where the theoretic modeling can be 
combined with quantification, however, it seems that catastrophe 
theory will only be useful in trying to better understand our fields. 
I think this is important, and the trial and error process of fitting 
models to various aspects of organizational functioning may increase 
our understanding of the process. However, I do not see any short- 
range prospect of using catastrophe theory to establish a common 
qualitative language to enable better comparisons of situations, 
conditions, or problems among institutions. Perhaps such an event ma\' 
come to pass if enough people can be induced to participate in the 
trial-and-error approaches that might be attacked by team combinations 
of experts. But as of now, the most I can anticipate is the opening 
of new perspectives about social organizations and an increased 
awareness of the similarities of organizational phenomena with those 
in other fields. 

Having stated my misgivings, I will now speculate as to some 
possible applications of the simple cusp model of catastrophe theory 
in a social organization--specifically, the university' or college. In 
the cusp model, we are concerned with a three-dimensional situation in 
which the joint occurrence of two variables may interact over some 
large period of time without provoking a major shift in a third 
variable. The classic case cited in the literature as an appropriate 
setting for catastrophe theory modeling is the situation of the 
combination of tension and unrest in a prison, the ebb and flow of 
interaction between tension and unrest until some critical point in 
either  one  or  the  other or both variables causes  a  sudden  shift 
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resulting in a prison riot. Such sudden shifts can take place in many 
aspects of university operation as well as in other social 
organizations. One possibility is the usually innate resistance to 
unionization that is encountered in a university. Since variables 
[factors] that might lead to a desire to unionize typically involve 
general working conditions on the one hand and remuneration [salary, 
rewards, or benefits] on the other, one might visualize a situation in 
which the combination of these two variables--one reaching an 
acceptable level and the other not, or both being less than 
acceptable, or both being reasonably unacceptable--may still provide 
insufficient impetus to cause the majority of the faculty to decide 
they wanted or needed a union. Some critical point is usually 
reached, however, involving either or both of the variables which 
causes a sudden change of mind and a faculty vote to unionize. 

Another way of looking at a very similar and not unrelated 
situation would be to visualize a cusp model in which one variable is 
job satisfaction and the other variable is perceived value of the 
psychological trait of loyalty to the institution. It is my perception 
that individuals--and probably organizational units as a whole--often 
remain steadfastly loyal to the institution in which they work, 
despite negative forces such as deteriorating work conditions, 
noncompetitive salaries, lack of recognition or reward for excellent 
performance, and signs that others do not reciprocate or share one's 
valuation of loyalty, until suddenly, often with no noticeable overt 
action, loyalty to the institution suddenly disappears. Perhaps the 
descriptions of the variables suggested in these two examples should 
be changed. I can think of alternative suggestions, but I think the 
process of refining the definitions of the variables will be part of 
the beneficial process of using catastrophe theory models to 
understand better what transpires in sudden shifts of the kind 
represented by the two suggestions. 

Johnson and Lacher (1981) have demonstrated how some of the 
features unified by the cusp catastrophe, such as local minimum, 
stationary bifurcation, and hystereses loop, might be applied to a 
decision involving student admission policies. Such models could be 
applied to many kinds of decisions in an organization, but 
particularly those that might be considered political decisions. At 
some point every decision-maker is answerable to someone--a group of 
faculty members, an administrator, a board, or in private enterprise, 
the stockholders. Many decisions, therefore, are made according to 
what they perceive the sentiment to be of those to whom they are 
answerable. Such shifts and changes in decisions can be modeled by one 
or more of the three models mentioned above. A fourth model--saddle 
point--would appear to be most useful in any decision in which there 
are two opposing points of view, both of which must be brought to bear 
simultaneously in making a decision. It is unlikely, assuming that 
the proponent of each point of view is equally firm and equally 
powerful, that either side will achieve the highest degree of 
satisfaction in whatever decision is made. Rather, it is more likely 
that some sort of compromise must be reached with both sides achieving 
less than their ultimate desires. 
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Perhaps attention should be given to the possible application of 
catastrophe theory models differentiated according to types of 
decisions or manner of decision-making that vary among several types 
of organizations. For example, decision-making in a military 
organization will be different than decision-making in a business or 
industrial organization, both of which would be different from the 
process in an educational institution, other social service, or 
nonprofit organization. Obviously some similarities in the decision- 
making process prevail, but the pressures of politics seem to vary, 
the obeisance to authority varies, and the extent of participatory 
democracy as a part of the decision-making process certainly varies. 
Thus common catastrophe theory models might be applicable but the 
variables representing the different dimensions might be quite 
differently defined. For example, the model might be most useful in 
clarifying the differential effects of variables that enter into a 
promotion decision for persons in the military, in business operation, 
or in an educational institution. Furthermore, such differentiation 
might provide insight into the ways in which various psychological 
variables (such as loyalty referred to above) are influenced 
differentially by conditions innate to or imposed by a particular 
organizational structure. 

COMMENTARY 

Note once more the emphasis on teamwork, expressed by Stewart and 
Hastings, and the need to develop experience in many m.ore specific 
applications, expressed by Stewart. 
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PERSONAL OBSERVATIONS WITH RESPECT TO THE APPLICATION OF 
CATASTROPHE THEORY TO HIGHER EDUCATION MANAGEMENT 

Ben Lawrence 

Like Walker's article, these are the 
observations of someone who is actively involved in 
the "sharp end" of administration, hence deserving 
careful attention. 

It focuses on the simplest catastrophe model, 
the unembellished cusp, and suggests that while 
this has its place in teaching inexperienced 
administrators and in theoretical research on 
administrative processes, it is less useful to the 
experienced administrator who will already possess 
an intuition for "catastrophic" effects. 

If additional quantitative information could 
be found (e.g., the relative sizes of poles of 
opinion as well as the qualitative feature of 
bimodality) this might prove useful to the 
practicing administrator. 

An interesting problem to consider is the 
effect of changes in the weighting of priorities. 

The utility of the catastrophe model lies in its graphic 
conceptual representation of real and potential shifts in behavior. 
The model will be intuitively acceptable to most college and 
university administrators: It can be used to describe real and 
potential situations of which they are well aware. The utility to 
experienced administrators I believe to be limited. I will return to 
this assessment later. i 

The model has high utility as a teaching device for aspiring or 
beginning administrators. While most experienced administrators, at 
least in higher education, will find the model intuitively acceptable, 
their intuition for the most part was gained from experience. 
Instructional exercises using this model could be very useful in 
conveying to aspiring or beginning administrators the kinds of 
problems they will generally face on a day-to-day basis and in 
providing a means of thinking about them. 

Researchers may also find the model useful as a heuristic tool. 
I do not believe that needs explanation. Ray Zammuto of the National 
Center for Higher Education Management Systems (NCHEMS), for example, 
has used it in this way in his studies of the impact of decline on 
colleges and universities. I 

As I stated above, I believe the model has little utility for the 
experienced administrator. However, it would be interesting to pursue 
the matter. 
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Most college and university administrators, particularly 
presidents, are well aware that some changes (especially if they are 
sudden) in the behavior of an organization or its environment can have 
serious negative impacts on their institution. They do not eschew 
change, however, and indeed they often promote change. One of their 
primary responsibilities is to be on the lookout for change--be it 
planned or as a result of external forces that can cause harm to the 
effectiveness of the institution. Accordingly, they not only plan but 
also develop contingency strategies. While often not articulated, 
there is an intuitive understanding of catastrophe. Their problem is 
not in understanding but in predicting and devising interventions. 
The complexity of the interacting variables is the major deterrent and 
while catastrophe theory improves upon current methodologies by one 
dimension, it does not appear to be that significant. 

The following example will serve to illustrate. A major concern 
of a public college or university president or the C.E.O. of a state 
system is financing. To reduce this major concern to the catastrophe 
model, one must utilize variables that in themselves may be 
susceptible to analysis using the  catastrophe model. 

de^^^' 

In this model, as enrollment demand increases, the propensity of 
state government to fund the institution will increase. As the price 
(cost to state) increases, the propensity to fund will decrease. As 
both enrollment demand and cost to the state get high, few 
administrators would deny that a state of uncertainry will arise 
because of the conflicting propensities on the one hand to satisfy 
enrollment demand and on the other to reduce cost to the state. 
Legislative  bodies  will  polarize  around  those  two  general 
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propensities.  Administrators seek to ameliorate such polarization and 
generally keep the propensity to fund high. 

The model, however, is of little practical use, even though I 
suspect with enough money and time that data could be gathered to use 
the model in a predictive sense as Zeeman has done in the case of the 
Gartree Prison (1977, p. 387-406). 

The model does not tell me rhe distance between the two poles: 

or 

This is an extremely important factor for it helps determine 
intervention strategy. If the distance between the two poles is 
great, a strategy of compromise could have devastating short-term 
effects on the institution. \Ve have seen this occur in the last two 
years at both the state and federal levels. The strategy then needed 
is to shift the weight of opinion to a clear majority on the higher 
propensity to fund. If the distance between the two poles is small, 
compromise is probably the best strategy for the long term. Not 
compromising will intensify the polarization and creates animosities 
towards the institution that will compound the problem in coming 
years. 

This  raises a point of interest, 
superimposed on the catastrophe model. 

Imagine the  following model 



Note that I have changed "Propensity to Fund" to "Funding Level" 
and "Enrollment Demand" to "Enrollment." I have also introduced a 
dotted line in place of the cusp. 1 have, in effect, reduced the 
model to three easily measured dimensions. The surface of the new 
model now describes actual funding levels. Intuitively, I know there 
is a relationship between the surfaces of the two models. 

If, for example, the particular "funding event" was a bond issue 
(a binary issue) and the funding proposal lost because of the 
propensity not to fund, the dotted line would show a step down under 
the cusp and indeed that might be viewed as a catastrophe. While 
there is a relationship, the model itself does not help us predict the 
outcome. The weight of and the distance between the two modes is more 
predictive and the data collected in many instances provides insight 
that is helpful in developing intervention strategies to reduce the 
polarization. 

As I understand it, the reason this happens is that the 
dimensions themselves are not linear. Enrollm.ent demand itself is a 
complex function and one of the variables is price. So, too, price is 
a complex function and one of its variables is enrollment. 

As 1 have reviewed the several journal articles describing 
potential applications of catastrophe theory to higher education 
management, I observe that all are subject to the same general 
limitations described above. 

NCHEMS early attempts at simulation offered the theoretical 
possibility of prediction. And indeed, in a research setting (with 
considerable satisfaction) we were able to develop models that were 
essentially a series of interrelated equations with the output of one 
becoming one of the inputs to the next. The data requirements were, 
however, huge--foreclosing the feasibility of application. As we 
simplified the models to curtail data requirements the models became 
less satisfying. 

Our current search for solutions to these kinds of problems is 
taking us in the opposite direction--more disaggregate analysis. The 
integration of the results of these disaggregate analyses for the time 
being will be made in the context of decision-making itself. 

I found my visit helpful and informative. While I cannot point 
to any one thing that NCHEMS will do as a result, the discussion has 
enhanced my perspective, creating the potential for some future 
practical connection between theory and practice. 

COMMENTARY 

The recent paper by Peregoy and Zeeman (in preparation) sets up a 
model which corresponds quite closely to the idea of changes in 
weighting of priorities playing an important role in the production of 
sudden changes. 
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It should be emphasized here that "catastrophe theory" is not 
just a body of dead knowledge. If it is to be of any use to anyone, 
it must develop. It has not stood still by any means since the early 
work of Thorn and Zeeman; Stewart's contribution in particular makes 
the point that at least twenty different variations on the basic theme 
exist. The aim of catastrophe theory should be the development of a 
coherent body of mathematical techniques for the analysis of sudden 
change. The idea that Thorn's Classification Theorem lists all 
possible sudden changes is an unforrunate misinterpretation of 
expository articles and needs to be corrected. The importance of 
the theorem is that it lists several natural and basic ways that 
sudden changes might occur and that it lays down a paradigm for 
developing analogous theories in other contexts. 

Another point worth re-emphasizing is that catastrophe theory 
consists of more than a "cusp model" and is at its best as a unifying 
structure. Thus, Lawrence's comment near the end that the current 
trend at NCHEMS is to "disaggregate" analyses of specialized topics, 
leaving the integration of knowledge to "the decision making process 
itself (i.e., to a process not well understood), might be the very 
place where catastrophe theory could play a meaningful role. 

A final comment relative to both Walker and Lawrence: It is 
difficult if not impossible to get administrators to spend much time 
speculating on mathematical modeling of simplified versions of what 
they themselves do for a living. They are more interested in doing 
what they do than in theorizing about it. (Presumably this last 
sentence is true of almost anyone.) Thus, if new types of models are 
to impact the effectiveness of administrators, the initial 
investigations and demonstrations of utility will have to come from 
some other source. Administrators themselves will be, and should be, 
the last to be convinced. 
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CATASTROPHE THEORY AND THE SOCIAL SCIENCES 

Loren Cobb 

Cobb looks at the impact of dynamical systems 
and statistics for stochastic processes on 
mathematical models in the social sciences. Early 
applications of catastrophe theory suggest four 
major statistical implications, including the 
importance of historical studies, the need for a 
statistical theory of nonlinear time series, the 
need for statistical detection of multiple modes, 
and the importance of stochastic differential 
equations. He warns of the need to place 
catastrophe theory within the larger domain of 
nonlinear dynamical systems. 

IMPACT I 

The significance of catastrophe theory for the social sciences 
(here meaning sociology, economics, anthropology, history, political 
science, psychology, psychiatry, education, and administration) is 
twofold. First, by presenting several remarkable and appealing 
behavioral characteristics (bifurcation and hysteresis) not previously 
seen in social science mathematical models, catastrophe theory has 
encouraged many social scientists to learn about the broader field 
which contains catastrophe theory, namely nonlinear dynamical systems. 
This cannot fail to have a profoundly positive impact on the quality 
and subtlety of the mathematical m.odels and metaphors used by social 
scientists. Second, catastrophe models and their relatives pose 
severe problems of empirical verification, the solution of which will 
encourage a greater sophistication in statistical methodology than is 
now found in the social sciences. In fact, new statistical concepts 
and methods are now being developed to cope with the unique problems 
posed by catastrophe models. 

The above two effects of catastrophe theory are certainly not 
independent. Traditionally, social scientists have relied on 
statistical tests for the empirical verification of their research 
hypotheses. These tests are possible only when the random elements in 
the hypothesis have been clearly identified. Thus a statistical 
verification of a catastrophe model requires that it be expressed in a 
suitable stochastic form. But to do this one must first thoroughly 
understand stochastic nonlinear dynamical systems. The net effect is 
that social scientists who become seriously interested in catastrophe 
theory will learn a lot about two subjects--dynamical systems and 
statistics for stochastic processes. This effect is already clearly 
visible in the social science literature. 

The actual substantive impact of catastrophe theory on the social 
sciences  has  been  quite small.   To date there have been  no  truly 
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convincing models of social phenomena that contain catastrophes. 
However, this almost certainly reflects the difficulty of the subject 
and the impoverishment of social science methodology. J. Q. Smith 
(1983), a statistician, has demonstrated the existence of catastrophes 
in certain decision-theory situations and several authors have proven 
the existence of catastrophes in certain economic and voting models, 
but these applications are relatively unimportant and are primarily of 
theoretical interest. On the other hand, experimental psychologists 
may be on the verge of some very successful applications and there are 
several promising applications in political science. All in all, it 
is still much too early to tell. It is reasonable to suppose that 
there will be a gradual increase in the quality of social science 
applications of catastrophe theory as researchers become familiar with 
the models and their associated statistical methods and problems. 

STATISTICAL CONSIDERATIONS 

There are four major statistical implications of catastrophe 
theory: 

1. The hysteresis effects observed in catastrophe models suggest 
that scientific experiments MUST take into explicit account the 
history of each experimental unit. Failure to do this will result in 
a grossly inflated within-cell variance if there is more than one 
stable equilibrium value in the given cell or experimental condition. 
This phenomenon is already well-known in certain branches of 
engineering which routinely deal with hysteresis effects but is 
virtually unknown in all other areas, particularly psychology and 
economics. An inflated within-cell variance estimate results in an 
inflated estimate of the total error variance in an experiment which 
will degrade or possibly eliminate the statistical significance of the 
test of the experimental hypotheses. Perhaps many social science 
studies have shown inconclusive results because of unsuspected 
essential nonlinearities in the dynamics of the processes under study. 
Certainly the usual methodology in the analysis of variance is 
completely inadequate for detecting such effects. 

2. There are so many difficulties associated with reliably 
deducing the presence of a catastrophe from snap-shot (i.e. single 
point in time) studies that the use of time-series methods will surely 
increase. But this will necessitate the development of better 
statistical theory for nonlinear time series models with time-varying 
controls. This is bound to become an active research area in 
statistics, as it already is in engineering. Certainly the mainstay 
of time-series analysis, the 3ox-Jenkins method, is com.pletely 
inadequate for this purpose. 

3. When snap-shot data are all that are available, it is still 
possible to infer much about the underlying dynamics of a system by 
analyzing the shapes and higher-order moments of the observed 
frequency distributions. This approach has a long history in certain 
limited areas of the social sciences (e.g. the study of income 
distributions), but with the advent of statistical catastrophe theory 
it should become much more widespread. Detecting and explaining 
multimodality  in  frequency  distributions with hypotheses  that  use 
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multi-stable systems instead of multiple subpopulations will become an 
active research area in many disciplines. 

4. With very few exceptions, social scientists have avoided 
differential equations as a tool for theory construction, primarily 
because of the patently nondeterministic nature of social processes. 
Statistical catastrophe theory, however, begins from a formulation 
using stochastic differential equations which incorporate the relevant 
random effects and simultaneously allow the full power of differential 
equations to be brought to bear on the theory. Almost as a fringe 
benefit, these stochastic models carry with them the essential 
ingredients for statistical tests. Thus social scientists now have 
access to methods that are mathematically powerful, substantively 
interesting, and statistically verifiable. 

CAVEATS I 

All of these implications tend to make catastrophe theory sound a 
good deal m.ore important than it really is. To bring things into 
proper perspective, it should be recognized that many of the same 
points made previously could also be made about the recent use of 
modern algebra to describe a very wide range of social and cognitive 
structures. Catastrophe theory is a relatively small area within the 
larger domain of nonlinear dynamical systems and it is to this larger 
area that I attribute most of the benefits stated here. However, 
catastrophe theory has had more than its share of publicity and 
controversy which has in turn called our collective attention to the 
larger issues and problems. 

•1 

The controversy surrounding catastrophe theory can, I believe, be 
distilled down to the question of the scientific validity of basing 
the justification for a given model on the mathematical property of 
genericity. (Genericity is a mathematical term that denotes a kind of 
typicality. Perfect symmetry in a mathematical model is usually non- 
generic so that when symmetry occurs in natural phenomena there is 
always an important and nontrivial reason for it.) For myself, I find 
the genericity argument satisfactory only for sorting out promising 
models from unpromising ones. If a nongeneric model is empirically 
better than a generic model, then it is important to find out w'hy. 
Beyond this it is neither necessary nor productive to use genericity. 
This point of view essentially abandons one of the principle reasons 
for using catastrophe models. However, it is not at all clear how 
genericity extends to statistical models, and in this context an 
alternative and easier justification follows from the parametrized 
form of Laplace's theorem. Thus the major part of the controversy 
about catastrophe theory is irrelevant to sciences that will be using 
statistical forms for their models. 

COMMENTARY 

What  is the motivation for this approach?   It is a very natural 
development from a series of different mathematical points of view. 
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First, there is the dynamical systems (differential equations) 
idea of a gradient flow (things flow downhill on a landscape and 
accumulate in valleys) which is at the basis of a great deal of 
mathematical physics. Potential theory and variational principles are 
two examples. 

Second, interest has been aroused recently in stochastic 
dynamics--a dynamical system perturbed by statistical noise. (Stuff 
flows downhill but random effects kick it about and disturb its 
equilibrium.) Mostly this topic arose in engineering control problems 
(e.g. the behavior of an aircraft) but they have since been widely 
applied elsewhere. 

Third, there is pure mathematical input--the nature of crirical 
points. Usually these are "nice" (i.e. Morse functions, with 
hilltops, saddles, valleys) but they can be degenerate and more 
complicated (see Markus, this work). Catastrophe theory arose in 
exactly this setting and its mathematical importance has never been 
challenged. 

Most work in stochastic dynamics concerns the behavior of a 
gradient dynamical system, near a nondegenerate critical point under 
w'hite noise. Cobb takes the next, and entirely natural, step of 
studying the degenerate points. The mathematics pretty much demands 
that such points be unfolded (universally perturbed) into parametrized 
families of systems. 

Cobb s class of partial differential equations arises as the 
stationary equations of such an unfolded system. Poston has shown how 
the elementary catastrophe potentials arise as the low-noise 
asymptotic limit of stochastic differential equations. They are thus 
one very natural way (to a mathematician) to study stochastic 
differential equation models whose stationary equations may bifurcate. 

Incidentally, dynamical systems theory has been forced to pay 
extensive attention to bifurcations--not just what one system will do, 
but how that behavior can change. There is a need for a parallel 
stochastic theory. 

The actual results that Cobb has obtained are only one tiny step 
in an enormous program. His main interest is in practical estimation 
of empirical distributions and the use of the simpler stochastic 
differential equations as models for real processes. But the point of 
view that his work opens up is of clear importance and has a long 
mathematical pedigree. It is not a concocted side-issue: It is part 
of the mainstream. 
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In response to a request for comments on the first draft of this 
report, we received several positive and even congratulatory replies. 
Richard Savage wrote the following letter which raises some 
substantive issues which could form the basis for an additional 
exchange of ideas. We reproduce that letter here, with sentences 
deleted which refer to items that were modified for this final version 
of the report, in order to stimulate that exchange. 

Yale University 
Department of Statistics 
Box 2179 Yale Station 
New Haven, Connecticut 06520-2179 
June 1, 1983 

Professor F. Craig Johnson 
Department of Educational Research 
College of Education 
Florida State University 
Tallahassee, Florida 32306 

Dear Craig, 

Thank you for your note of 13 May and the draft manuscript 
"Applications of Catastrophe Models to Organizational Effectiveness." 
I have read through the material and have a few general comments as 
W"ell as specific comments. 

As the report now stands, it is moderately interesting. It 
suffers from having many authors. It really would be well to have it 
edited and unified in some ways. In addition to having many authors, 
it suffers from the disease that everyone has with catastrophe theory. 
Everyone seems to have some self-interest that they need to protect. 
Each person likes to introduce their own vocabulary. (I will come 
back to a separate paragraph on the problems of "linear".) Many of 
the statements really appear quite wild. They are not tempered by 
facts or by reality. There is much backpatting. There are very few 
results relevant to the discussion at hand. I suspect that the main 
difficulty is that the authors are typically not experts in the areas 
that they are interested in writing about, that is, the social 
sciences. 

One thing that seems essential to make this document readable is 
an essay on meaning of linear and nonlinear .... As far as the 
analysis of the stationary states goes, the basic question is not 
linear or nonlinear. Or at least that is my opinion. The critical 
thing is that in the catastrophe theory models the regression surface 
is not single valued. Putting the emphasis on multivariate functions 
instead of  linear  or nonlinear would catch the eye as  to what  is 
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exactly going on."'" Questions of scaling and nonlinearity are for the 
birds. Those were road blocks set up by the psychologists 40 years 
ago. They have in fact never been relevant to the development of good 
science. If you are going to get beyond the talk stage, you must 
become quantitative. Scales are developed so that linear operations 
become useful. That is the way science operates. Statisticians are 
quite competent to look at situations which are nonlinear in various 
ways. In particular, all of statistical regression theory is 
concerned with the possibility that the regression equations are not 
linear in the independent variables but linear in the parameters. 
(One must be careful to make sure that these terms do not get switched 
around. I noticed that at some point in the document the control 
variables which I would call the independent variables become the 
parameters.) In addition to that large group of situations, 
statisticians have been developing extensive techniques for handling 
situations where the parameters enter into the regression function in 
a nonlinear way. I really think that it is the multivalued aspect of 
the regression function that brings a new dimension to the problem 
from the viewpoint of current statistical activity. 

Stewart's "Overview" will be practically useless for this 
audience. None of the terms seem to make any sense to me . ... In 
general, his writing is too fragmentary here to make it of any use.-r 

In Stewart's second article, second paragraph from the last on 
page 21 , is that idle speculation or does he really have som.ething 
concrete in mind. It is not sufficiently spelled out to even be 
suggestive. Is it worth including? Does he have examples from other 
fields? Page 26) the first of several irrelevant examples. (Can we 
have he data to look at it?) Near the [top of the next] page, if the 
data had been processed by good statistical package, it would have 
looked at the residuals and, likely, would have found what we are now- 
discussing. The parenthetical remark ... is just that kind of 
expression which seems entirely out of place. With bimodal residuals 
we may not have gone to the idea of a multi-valued regression surface 
but w-e certainly would have been looking for trouble. In fact, we 
might find a better explanation than the bimodal regression surface. 
In the last paragraph on page 34 in the second line, the word 
"parameter" is used as I would use "independent variable." I strongly 
urge that a formal discussion be m.ade of the words "linear" and 
"nonlinear" in the context that are being used here, that is, 
statistics - social science and mathematical physics. 

In Holt's article on page 37 the second complete paragraph reads 
(to put it mildly) bizarre.   He has technical terms confused, he does 

"" We agree completely.   Some of the comm.entary was rewritten in or^er 
to make this point less obscure. 

+ Stewart  was asked to give a brief overview,  in outline  form,  to 
bring  the  reader  up  to date  on  issues  developed  in previous 
publications.  Perhaps it is too brief. 
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not present a realistic or interesting form of science, he brings in 
fallacious probabilistic arguments, and I am doubtful that he 
understands the difference between Bayesian and non-Bayesian 
statistics. It is a terrible paragraph. The 50°o [at the top] of 
page 38 is ludicrous. Ask yourself where it could come from in a 
serious argument. Page 38, third complete paragraph, is ridiculous. 
(Paul Meehl is a great man and I do not want to contradict him. I 
hope the current author just has the story screwed up.) How many 
examples do you know of natural science predicting something exactly. 
Notice the inverse square law is not even trusted by natural 
scientists; they have for years been checking to see if that could be 
right. Even so, in the inverse square law there's an undetermined 
parameter that needed EO be estimated, and that is the gravitation 
constant. I have no idea of what the author is talking about. When I 
see the handbook of chemistry and physics, I wonder what world he is 
in. Page 41, first complete paragraph, hypothetical history has 
no fun for me ... . [At bottom of] page 41, how in the world did 
international relations get in here? .... Last paragraph I find 
madness. Without a good warehouse of relevant examples, this seems 
outrageous. Is this what is really going on in modern social 
science? " 

In Cobb's article, page 106, the last complete paragraph reads a 
little bit strangely compared to some of the other things that we will 
see. In particular, there are many people working in catastrophe 
theory who do not bother to look at the differential equation but only 
look at the steady states. Certainly much of social science has got 
along for years and done some interesting work with neither looking at 
the dynamics nor looking at the possibility of multi-valued response 
functions. Thus his claim is much too strong. I do agree with him 
that the natural approach to catastrophe theory for the social 
scientist is through the dynamics. In fact, I say that several times 
in my little piece. But he has to explain that that is just one 
route. Near the top of page 107 is Cobb trying to say that some of 
these results are in normative (in contrast to behavioral) situations. 
And what we are primarily interested in is finding examples of 
catastrophes in behavioral models and not in normative models. Page 
107, point 1, is complaining, incorrectly, that the analysis of 
variance would not be capable of detecting a phenomenon which has not 
yet been shown to exist. The analysis of residuals would be 
indicative of just this type of phenomenon. Routine analyses of 
residuals are made in most good practices of statistical packages. It 
might be interesting to show point 2 to Professor Box. It would have 
to be done in context so he could understand what was being claimed. 
Page 108, last paragraph, I never did understand the meaning of 
genericity." And the "parameterized form of the Laplace theorem" 

does not ring a bell with me either.  To whom is the author writing? 

On the other hand, E. C. Zeeman feels that those papers which 
reflect research using catastrophe theory, such as the works of Cobb 
and Stewart, are the strongest in the report. Zeeman was less 
impressed with papers by people who had not done any research. 
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The Markus article appeared rather grand. I am not too sure it 
was relevant .... 

In summary, I think there are two main difficulties with the 
report. There are often wild and unsubstantiated or meaningless 
statements. Further, the amount of relevant material is quite small. 
The first point could be taken care of by a rather careful internal 
refereeing. You might send some of my comments to the authors and see 
if they would like to modify or support statements which I found 
outrageous. That sort of thing could be done on a systematic basis. 
Actually, let some of the involved authors act as referees for the 
other papers. On the question of relevance, I think the problem is 
more difficult. Perhaps the person who threw in thyroid gland would 
be willing to take it out. I would rather replace it with nothing 
than to leave something that is so distant from what we are interested 
in. But maybe if the pressure were applied to him he could come up 
with a better example. Maybe a person like Cobb could at least 
speculate on what a nonlinear time series model would look like for 
some special issue in the social sciences. He has not done this in 
the past. It would be good to apply pressure to him to get out what 
he thinks would be interesting models. The one data set of his that I 
am familiar with is his analysis of the birthrates as a bimodal 
distribution. To me it is an extremely bad example. One would guess 
that in this situation the data came from more than one population. 
Put a little presure on some of these people and see if they can say 
something that is relevant. 

Best of luck.  Please do not squeeze me. 

". Sincerely, 

Richard I. Savage 
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APPENDIX:  MATHEMATICAL LEXICON 

It is beyond the scope of this lexicon to review the breadth or 
depth of interaction between dynamical systems theory and social 
sciences. However, it should be noted that a bibliography (Wetherhilt 
and Zeeman, 1981) prepared recently at the University of Warwick in 
Coventry, England, contains 58 pages of references and is still 
incomplete. Fields of science (other than dynamical systems) well 
represented in this bibliography include: statistics, physics, 
chemistry, geology, biology, medicine, fluid dynamics, meteorology, 
economics, management, psychology, sociology, education, political 
science, archaeology, and several others (depending on how finely one 
subdivides disciplines). Scientists and mathematicians alike are 
realizing that many perplexing observations are better understood and 
described through the qualitative universal language of dynamical 
systems. Some basic terms of the language are presented here. The 
end of the decade will see a richer language with wider usage in all 
sciences. 

Dynamical  systems.   A dynamical system consists of a number  of 

states (1-dimensional variables) x ,••■, x and rules governing 
changes of state. The rules may be thought of as differential 
equations of the form 

dx^JVdt =■     f.(x^^\..., x^^^) '   j 

where  f.  (j  = l,...,n) are smooth functions of n variables  and  t 

represents time. The manifold parametrized (locally) by the various 
states of the system is called the phase space. llius, each point of 
the phase space represents a state of the system. Alternative to a 
system of differential equations, the rules for a dynamical system may 
be taken to be a specification of speed and direction for each point x 
in phase space, with these specifications being smooth functions of x. 
For a given x, the rules determine a path which x must follow through 
phase space. Extending these paths indefinitely (forward and backward 
in time) produces a collection of paths in phase space satisfying 
three principle constraints: (1) wherever speed is nonzero the path 
is sm.ooth, (2) every point in phase space lies on a path, and (3) no 
two paths intersect. A specification of paths in phase space 
satisfying (1), (2), and (3) locally and globally is equivalent to a 
system of differential equations like the one mentioned at the 
begiiming of this paragraph. 

A path of the system together with the direction of travel along 
the path is called a trajectory of the system. A phase portrait of a 
dynamical system consists of its phase space together with an 
indication of its trajectories. In practice, one cannot sketch all 
trajectories without coloring every point in phase space (resulting in 
nothing more than a phase space of a different color), but one must 
sketch enough trajectories to indicate the dynamics of the system. 
Figures 1 through 8 are phase portraits of various dynamical systems. 
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A parametrized dynamical system is really an entire collection 
of  dynamical  systems parametrized by one or more  real  parameters 

c , ■ ■ ■ , c often referred to as "external" or "control" 
parameters.   The  parametrization  is  smooth (the functions  f.  are 

smooth functions of the parameters) and often slow (thinking of the 
system, as evolving, the rate of evolution is slow compared to the 
rates of travel on the paths of the system). A parametrized dynamical 
system retains the same phase space as it evolves, but the phase 
portrait m.ay evolve with the system. 

A point  p in the phase space of a dynamical system  is  called 
non-wandering  if neighbors of p do not move away forever:  Given  any 
neighborhood N of p, there is some point q of N so that q returns to N 
at  some  later time.   Alternatively,  p is wandering if  p  and  its 
neighbors  move away permanently:   There is some neighborhood N of p, 
each point  of  which moves out of N and never  returns.   The  non- 
wandering  set  of a dynamical system consists  of  its  non-wandering 
points.   This set is usually denoted by 2.        The non-wandering set is 
invariant (that is,  points of Q  go to points of Q.  under the action of 
the  dynamical  system)  and contains all "eventual" behavior  of  the 
system.   Assuming  that the speed of travel of trajectories  is  fast 
relative to our powers of observation,  the non-wandering set contains 
all  "observable" states of the system.   Understanding and describing 
the  non-wandering  set  is the most im.portant  (and  often  the  m.ost 
tractable) aspect of forming a phase portrait. 

In a parametrized dynamical system, the non-wandering set 
evolves with the system, and understanding the evolution of ^ along 
with associated changes in stability is crucial. 

The various phase portraits or non-wandering sets of a 
parametrized  dynamical  system may be  graphed  simultaneously  in 

,.  .     (1)        (in)    (1)'       (n)   K. ■ •        u coordinates  c   , ■ ■ - ,   c   ,  x   ,...,  x   ,  obtaining  a phase 
portrait  or non-wandering set for the entire parametrized  dynamical 
system.   The  examples that follow serve to illustrate the ideas just 
introduced as well as a number of other concepts. 

Discrete time systems. A discrete time system is a dynamical 
system in which time is measured in discrete units. The rules 
governing change of state may be thought of as difference equations 

Ax^j^ = f. (x^l\..., x^-^) 

where f. are smooth functions or simoly as a recursion:   Points  move 
J 

about  phase  space in discrete jumps according to  certain  dynamical 
rules.   Most  of the concepts of (continuous-time) dynamical  systems 
have analogs in the theory of discrete time systems. 

It is difficult for the principal investigators to imiagine a 
deterministic system in any setting (physical, biological, or social) 
that  is not accurately modeled by some parametrized dynamical  system 
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(or a discrete-time system). Therefore, unless ruled out on 
scientific grounds, dynamical systems phenomena must be considered at 
least potentially useful in understanding real phenomena. In fact, 
evidence seems to indicate at present that facsimiles of all systems 
phenomena do occur in the physical and biological sciences and there 
is little reason to believe the social sciences are any simpler. It 
would follow that the language of dynamical systems is essential to 
communication  and understanding in the social  sciences. 

Qualitative behavior type. In cases where a definitive 
description requires mathematical technicalities inappropriate for 
this writing, the discussion is limited to the m.ajor attributes of the 
phenomenon and gives a canonicai model, meaning that (1) the canonical 
model exhibits the behavior described, and (2) by definition, the 
behavior type is anything qualitatively equivalent to the canonical 
model. Deeper understanding of these qualitative types requires, 
among other things, analyses of the canonical models. 

Two dynamical systems phenomena are qualitatively equivalent if a 
smooth coordinate change ("psuedolinear" coordinate change, in the 
language of Stewart) transforms the phase portraits of one to the 
other. Similarly, two parametrized dynamical systems phenomena are 
qualitatively equivalent if there is a smoothly parametrized family of 
smooth coordinate changes transforming the parametrized phase 
portraits of one to the other. 

An equilibrium is a state in which assigned speed is zero--a 
steady state,  a stationary state, a state which constitutes an entire 

trajectory.   Wheii speed assigned to the state x = (x    ..... x   ) -' ^ '^ ° oo''o 
is  zero,  the dynamical system cannot change into or out of the state 
X .   These  are the theoretical steadv states of the  system,  thoush 
O J 3 ^ 

they may not be observable in a practical sense.  A stable equilibrium 
is an equilibrium x with the property:   There is a neighborhood N of 

X   in phase space such that every trajectory passing through a point 

of N heads toward x  as t becomes infinite.  Stable equilibria are the 
o ^ 

observable equilibria of the system. If the system is in state x , 

where x  is a stable equilibrium,  and if some perturbation iolts  the 

system into a slightly different state in N,  then the dynamical rules 
will  drive  the  system back toward x .   If  the  system has  fast 

o 
"response  time," the net effect from an observer's viewpoint is  that 
the  system  remains  in state  x  even  in the  presence  of  small 

o 
perturbations.   "Reponse  time" is the time required for a point of N 
to  get  so  close  to x  that  our  powers  of  observation  cannor 

o 
distinguish it from x . 

o I 

Bifurcation is used in two senses. As an external parameter c 
passes through a certain value c , a qualitative change in the non- 

wandering set occurs, usually accompanied by a shift in stability. 
The  term bifurcation  is  used when  such change  is  continuous. 
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Bifurcation also is used to mean any of a number of particular 
qualitative types of bifurcation, such as stationary bifurcation and 
Hopf bifurcation. A qualitative change in fl usually means a 
qualitative change in the observable states of rhe system as an 
external parameter slowly changes. A qualitative change may occur 
continuously or discontinuously, distinguishing "bifurcation" from 
catastrophe" (discussed later). 

A stationary bifurcation is a type of bifurcation in which one 
equilibrium divides into three equilibria as some external parameter c 
passes through a certain value c .   In the most useful  setting,  the 

o 
original  equilibrium becomes unstable while two stable equilibria are 
created. 

3 
Canonical mode!:  dx/dt = cx-x 

A cycle is a trajectory that returns to itself; i.e., a closed 
loop of states through which the system flows indefinitely, in 
periodic fashion, always returning to a given state in some finite 
period of time. If a trajectory ever returns to the same state, this 
trajectory must be a cycle (otherwise constraint (3) would be violated 
for the dynamical system localized near the point of self- 
intersection). The return time is the same for any point of the 
cycle; the time of first return is called the period of the cycle. A 
stable cycle is a cycle V with the property: There is a neighborhood N 
of r in phase space such that every trajectory passing through a point 
of N heads toward F as t approaches infinity. 

Comments similar to the ones for stable equilibria apply here. 
Stable cycles are the "observable" cycles of the system. Stable 
cycles are sometimes called limit cycles. 

A Hopf bifurcation is a type of bifurcation in which a stable 
equilibrium becomes unstable while a stable cycle is created as an 
external parameter passes through a certain value. 

Canonical model: d8/dt = 1 

3 
dr/dt = cr - r 

[(9,r) are polar coordinates in the xx -plane].    The first equation 

insists  on rotation at a constant rate;  the second equation forces r 
(the  radius of rotation) to behave as a  stationary bifurcation. A 
line  of observable steady states disappears during the creation of a 
line of stable cycles of increasing radius. 

Catastr'ophe is used in tw^o senses. As an external parameter c 
passes through a certain value c , a discontinuity in the non- 

wandering set occurs. Catastrophe is also used to mean any of a 
number of particular qualitative types of catastrophe, such as fold 
catastrophe and cusp catastrophe. A discontinuous change in the non- 
wandering set usually micans a discontinuous change in the observable 
states of the system. 
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A fold catastrophe is a type of catastrophe in which a 
parametrized stable equilibrium and a parametrized unstable 
equilibrium coalesce, annihilating both equilibria, as an external 
parameter  passes through c .   In particular,  a parametrized  stable 

equilibrium  simply  disappears at c = c .   If the system is  in  the 

state corresponding to this stable equilibrium, then beyond c = c  the 

system must seek another state. Assuming fast response time, the 
system  might   appear   to  jump  from   one   state   to   another. 

2 
Canonical model:  dx/dt = c -x . i 

A doubia fold hysterasis loop occurs as an  external  parameter 
varies and catastrophe occurs in two places,  c = c  and c = c ,  with 

c  less than c .  As c changes from c < c, to c > c ,  one catastrophe 

occurs at c = c .  As c changes from c > c  to c < c , one catastrophe 

occurs at c = c^.   For c < c < c ,  there are two stable equilibria; 

for  c  < c  or  c > c  there is one  stable  equilibrium. 

3      I" Canonical model:  dx/dt = c + x - x . 

The fold catastrophe can usually constitute only part of the 
dynamics of a system that models real phenomena, because there is no 
other line of stable equilibria (or other attractors) to "catch" the 
system after the coalescing equilibria disappear. The double fold 
hysteresis loop is the simplest system containing catastrophic change 
from one "observable" state to another.   Notice that for c  < c < c 

there are two observable states for each value of c. Knowledge of the 
external parameter is not sufficient to predict the state of the 
system. However, if one knows the history of c, it may be possible to 
predict the state. 

A cusp  catastrophe occurs  when  a  system has  two  external 
(1) 

parameters,  one (say, c  ) exhibiting a double fold hysteresis loop, 
(2) 

and  the  other (say,  c  ) exhibiting  stationary bifurcation.  The 

hysteresis loop grows in size (from zero) as c ■*" moves into its post- 
bifurcation zone. 

(11    f1     3 
Canonical model:  dx/dt = c ^ + c '^x - x . 

Notice that when c    =0, the canonical model for the cusp reduces to 

the canonical model for stationary bifurcation and, when c =1, it 
reduces to the canonical model for double fold hysteresis loop. The 
cusp is a localized phenomenon (like stationary bifurcation) and a 
structurally stable phenomenon (like the double fold hysteresis loop). 
These concepts are discussed in more detail later. 

An attractor is a non-void set A in the phase :3pace of a 
dynamical system satisfying the following: invariance, i.e., A 
consists  solely of entire trajectories,  so that points do  not  move 
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into or out of A under the dynamical rules;  closure, i.e., A contains 
all of its limit points; stability, i.e., there is some neighborhood N 
of  A  in phase space such that every trajectory through a point of N 
heads toward A as t approaches infinity;  and indecomposability, i.e., 
some  trajectory heads  toward "all" of A as t  approaches  infinity. 
Notice that an attractor is a subset of the non-wandering set.  Stable 
equilibria  and stable cycles are attractors as are some more bizarre 
objects  discovered in recent years.   (See "strange" attractors.)   A 
fact  about attractors that is enlightening is A must contain a  dense 
trajectory,  i.e.,  some  point of A passes "as close as you  care  to 
choose" to every other point of A as t approaches infinity.  The basin 
of  attraction  is  the  largest neighborhood N  that  satisfies  the 
property in the definition of attractors.  A "strange" attractor is an 
attractor  that  is neither a stable equilibrium nor a  stable  cycle. 
One of the earliest examples was discovered by E.  N. Lorenz during an 
investigation of a model (obtained by truncating actual equations  of 
motion)  in fluid dynamics.   The behavior observed by Lorenz was that 
the system oscillates in one mode for several cycles, then switches to 
another mode for several cycles, then switches back to the first mode, 
etc.   The number of oscillations before a switch of modes appears  to 
be  a random sequence of integers.   (See Lorenz,  1963.)  The  Lorenz 
attractor  seems to be a "fractal" object with non-integral  Hausdorff 
dimension.  Other "strange" attractors have been discovered, sometimes 
in  a  purely  mathematical setting,  other times in  connection  with 
attempts to m.odel real phenomena.  Most of these fail to have even the 
most  basic  topological  amenities  such  as  local   connectedness. 
"strange"  attractors  are not well understood at  the  present  time. 
Their  study  and classification is one of the major  problems  facing 
dynamical systems theorists in coming years. 

A  phenomenon  associated with "strange" attractors is  sensitive 
dependence on initial conditions.   Throughout A there are points 
whose  trajectories are cycles of arbitrarily long periods as well  as 
points whose trjectories wander through A forever,  coming arbitrarily 
near  every other point of A.   In the presence of  even undetectably 
small perturbations,  the  behavior  displayed by such a  system may 
appear "random" even though it is theoretically deterministic.   This 
phenomenon is sometimes called chaos. 

An Q explosion occurs when one or more external parameters pass 
through certain values and a stable equilibrium or cycle transfers 
stability to an entire non-wandering set, creating a "strange" 
attractor. Such phenomena are not completely understood or 
classified, but their existence is established. From an observer's 
viewpoint, the system suddenly changes from well behaved to chaotic. 
Some of the latest research into fluid turbulence centers on this 
concept. 

A local phenomenon occurs when a qualitative type of parametrized 
dynamical system possesses an organizing center, i.e., a point about 
which the qualitative type of the system remains constant no matter 
how near to the point we restrict our observations. In terms of 
canonical models, this means that there exist arbitrarily small 
neighborhoods N of p in (parametrized) phase space such that (1) N is 
invariant, and (2) the restriction of the system to N is qualitativelj' 
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equivalent to the entire system. A stationary or Hopf bifurcation is 
local as is a cusp. A double fold hysteresis loop is not local. 
Local phenomena are independent of scale, so the concept is especially 
important in investigations where scale is artificially introduced. 

Structural stability is not to be confused with stability in the 
attractor sense. This is a property of the (parametrized) system 
itself. Roughly, a system is structurally stable if the qualitative 
properties of the system do not change when the system is perturbed to 
a slightly different system. A slight change in the parametrized 
functions  f.  does  not  alter  the  qualitative  appearance  of  the 

parametrized phase portrait. A stationary bifurcation is not 
structurally stable; both the cusp and the Hopf bifurcation represent 
stable types to which a stationary bifurcation can be perturbed. 
Structural stability is important in two ways. First, if a model is 
not structurally stable then even undetectably small errors in setting 
up the model may change its qualitative behavior. Therefore, in the 
"non-rigid" sciences (such as social and biological) structural 
stability is a natural and desirable property of models. Second, 
structurally stable systems are-easier to describe and classify 
mathematically. The cusp and Hopf bifurcation, being both local and 
structurally stable, are extremely important local phenomena in any 
science.   ,- 

There  are more restricted notions of structural stability which 
may  also be useful  in  social  science.    Consider  a  stationary 

3 bifurcation 
the  c-axis 

The  canonical model  dx/dt = cx-x has symm,etry  about 
m phase  space. 

bifurcation diagram (often called a 

5«» 

This  symmetry can be 
pitchfork"). 

;een m Its 

Reflection about the c-axis leaves the pitchfork, along with all the 
dynamics of the model, invariant. (This is Z/2-symmetry--the 2- 
element group acts on the cx-plane by sending (c,x) to (c,-x).) If one 
asks for the simplest structurally stable model containing the 
stationary bifurcation, one first finds all structurally stable 
diagrams to which the pitchfork can be perturbed and then seeks a 
model that combines all these forms. (This is a heuristic description 
of the Golubitski-Schaefer version of universal unfolding.) The 
pitchfork perturbs to structurally stable diagrams 
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and 

but also to two asymmetric pitchforks 

and 

which perturb to the structurally stable diagrams 

and 

respectively. The canonical cusp contains all four of these 
structurally stable forms; it is the "universal unfolding" of the 
canonical stationary bifurcation. 

However, if the Z/2-symmetry inherent in the canonical 
stationary bifurcation is an important feature we wish to maintain in 
our model, then we will consider only "Z/2-symmetric perturbations." 
The pitchfork then perturbs to two structurally stable (with Z/2- 
symraetry) diagrams: 

and 

r 
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(a) 

•^[- 

(b) 
x„ 

(c) 

Figure 1.  Equilibria.   These  illustrate typical  stable  (a)   and 
unstable  (b)  and  (c)  equilibria  in  systems  with one 

;.,, internal parameter x.  Each consists of three trajectories, 
one  of which  is  the equilibrium point x 

c 
wandering set consists solely of x . 

The non- 
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(a) 

Figure 2. Equilibria. When there are two or more internal 
parameters, the flow near an equilibrium can exhibit 
diverse forms of behavior. Each illustration assumes a 2- 
dimensional phase space (the plane in which the 
trajectories are sketched)--(a) is called a saddle point 
and is unstable; (b), (c), and (d) are stable; reversing 
the arrows in (b), (c), and (d) results in typical 
unstable equilibria. The non-wandering set in each 
illustration consists of the equilibrium point alone. 
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(a) (b) 

Figure 3.  Stationary  bifurcation.  These illustrate the parametrized 
phase portrait (a) and pararaetrized non-wandering set  (b) 

'■;     of a stationar3/ bifurcation with one internal parameter x. 
For  c  <  c  the system moves (in  the  x-direction  only) 

toward the stable equilibrium above c.  (These pictures are 
each vertical versions of Figure 1 (a).)  For c > c ,  the 

■ -": system moves toward either of the outer equilibria but away 
from the inner one. Notice that the same information is 

the less cluttered (b) where only the 
non-wandering set is displayed. The dotted 
indicates unstable equilibria. A picture 
the parametrized non-vmndering set in 
phase  space is often called a bifurcation 

conveyed   in 
parametrized 
line  in  (b) 
indicating 
parametrized 
diagra.Ti. 
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(a) (b) 

Figure 4. Cycles. At least two internal parameters are required for 
a (continuous time) dynamical system to exhibit periodic or 
oscillatory behavior. (One of these parameters may be time 
or, as often happens in mechanical systems, momentum.) 
Phase portraits containing cycles are illustrated with (a) 
stable and (b) unstable. In each case the non-wandering 
set consists of the cycle together with the equilibrium 
(which is unstable in (a) and stable in (b).) In terms of 
"observable" behavior, we would "see" oscillatory behavior 
in (a) and static behavior in (b) since omnipresent 
perturbation would not allow the system to remain in an 
unstable state. 
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x<2>t 

Figure 5.  Hopf  bifurcation.  The parametrized non-wandering set of a 
Hopf bifurcation is depicted.  The solid line above c < c 

indicates  a  stable  equilibrium  for  each  c < c .   As 
o 

c passes through c ,  the stability of this equilibrium is 

"transferred" to a cycle whose size grows from zero at  c . 

Note  that at least three parameters are required for  this 
model--two internal and one external. 
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Figure 6.  Parametrized phase  portrait of a fold catastrophe.  As c 
...      passes through c^ (from left to right in this picture)  the 

parametrized stable equilibrium (represented by the solid 
line) disappears, leaving the system with no "observable" 
states. 
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"slow" tuning of 
external parameters 

c 

"fast" 
response of 
the system 

(a) (b) 

Figure 7.     Parametrized    phase    portrait    (a)     and    parametrized     non- 
wandering set  (b)  of a double fold    hysteresis  loop.       With 
c  <   c   ,      there   is   only  one   steady  state.      As   c  raoves   slowly 

1' 
through 

'2' 
tl ne line  of  stable eauilibria 

(representing observed behavior) disappears in a fold 
catastrophe, and the system responds by (rapidly) seeking 
another state. The only one available is on the upper line 
of stable equilibria. As c slowly returns to original 
setting, a similar "jump" occurs at c = c .  The hysteresis 

loop itself is indicated in (b). 

13/ 



U2110?'v- 

.-■t 

Figure  8.     Cusp     catastrophe.     The parametrized non-wandering  set  of 

(2) (2) 
cusp  catastrophe   is   shown.        Sections   c =  constant   c 

o 

arc double fold hysteresis IOODS.  The section c   = c 
o 

is  a stationary bifurcation.   Note that three parameters 
are required for this raodel--one internal and tv;o external. 

y 
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